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1 Introduction

Models of social interactions have the appealing ability to quantitatively characterize

peer’s influence on outcomes in a network. In practice, in some data sets observations of

individual outcomes are all non-negative with some equal to zero. One example is tax

rates set by local governments. The censored outcomes can be explained as the result

that agents face binding constraints, such as the non-negative constraint. In a theoretical

model on behaviors, zero outcomes can naturally come out (Bramoulle et al. (2014)). A

Tobit model with social interactions can be used to account for both the censorship and

peer effects in a data set. However, interactions between agents in a network can be mod-

eled under different information structures. Two basic types are the complete information

and incomplete information ones. In the former case, agents know the relevant charac-

teristics of all agents in a network. Each agent’s behavior is directly affected by those of

others in a network. In the second scenario, some relevant features are private informa-

tion and an agent’s outcomes may be affected by her expectations on others’ outcomes.

These two types of information structures have different implications on interactions in

a network or a social group. Xu and Lee (2015) discuss in detail about the identification

and estimation of the Tobit model with social interactions under complete information

and establish the consistency and asymptotic normality of the maximum likelihood (ML)

estimator. A competitive model with incomplete information can be built by apply-

ing the general framework of social interactions under incomplete information set up by

Yang and Lee (2016a). According to Borkovsky et al. (2015), it is usually debatable on

which information structure to use in an empirical game application, when more than one

structures can be reasonable. Although in the literature of the game theory, there are

extensive discussions on the comparison of equilibria under different information struc-

tures in terms of welfare or incentives, e.g., Bergemann and Morris (2016), there is scarce

investigation on formal econometric test for selection of models with different information

structures.1 In this paper, we construct a game theoretical framework for Tobit models

with social interactions under complete and incomplete information structures and set
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up a Cox type test for selection between those two models. Our non-nested test comple-

ments the literature on game estimation. The theoretical investigation is applied to the

property tax competition among adjacent municipalities in North Carolina.

As an effective way to model censored or truncated outcomes, the Tobit model has

gained much attention for both empirical and theoretical microeconometrics since Tobin

(1958) and Amemiya (1973). Even recently, it is still an active model for studies, e.g.,

Kumar(2012) proposes an extension of nonparametric estimation methods for nonlinear

budget-set models to censored dependent variables. Abreyava and Shen (2014) consider

estimation of censored panel-data models with individual-specific slope heterogeneity.

Both strings of complete and incomplete information on models of social interactions

have been sprung since the last decade. Lee(2007) and Boucher et al.(2014) discuss com-

plete information models where all group and individual features are public information

to all agents in a network or a social group. More traditional models of Manski (1993)

and Brock and Durlauf (2001) are built on incomplete information, where an agent’s

actions are affected by her expectations on average behaviors of other agents and group

characteristics in a social group. Manski (1993) studies linear models about socially in-

teracted continuous choices; and Brock and Durlauf (2001) investigate binary choices for

socially linked agents. In a recent work, Yang and Lee (2016a) extend previous social

interaction models to a form of partial information but essentially still under the incom-

plete information framework. They find that, by allowing an agent to have personal or

public information only on other agents’ certain individual characteristics but incomplete

information not only on their unobserved idiosyncratic shocks but also on remaining ex-

ogenous individual characteristics, conditional expectations about other agents’ behaviors

can be functions of private information. In Yang and Lee (2016a), their discussions have

focused on continuous choices and binary choices.

The bases of both our Tobit models with complete or incomplete information are

simultaneous-move games when players’ actions are bounded from below by no action.

In the complete information situation, given others’ actions, each individual maximizes
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her utility function subject to a non-negative constraint.2 For the case with incomplete

information (but may have a partial personal information), her aim is to maximize ex-

pected utility function. The expected utility is formed according to available information

and is rational in the sense that a profile of conditional expectations is consistent with

a Bayesian Nash Equilibrium (BNE). A key condition that ensures unique equilibrium

in both models with complete and incomplete information is that the interaction inten-

sity is within a reasonable range. That range corresponds to weak or moderate social

interactions, but not strong ones. Strong social interactions might demonstrate multiple

(expectation) equilibria which generate both stable and unstable systems. This happens

especially for binary choices models as shown by Brock and Durlauf(2001). For the Tobit

social interaction model with complete information, interactions occur directly on the

censored outcomes. Its Nash equilibrium (NE) can also be derived by a contraction map-

ping, which is valid in a similar scenario of weak or moderate social interactions. The

latter has been established in Xu and Lee (2015). While the Tobit model with complete

information has been studied in Qu and Lee (2013a) and Xu and Lee (2015), the Tobit

social interaction model with incomplete information is new in the literature. Therefore,

in this paper, we discuss its structure and also estimation issues in an appendix.

It is revealed from the Monte Carlo experiments that when we estimate models with

both the true and wrong information structures, the estimated log likelihood of a model

with a correct information structure tends to be larger than that of a model with wrong

information structures. Thus, estimated sample log likelihood provides with an intuitive

but informal criterion for model selection. The Cox type tests are based on estimated log

likelihoods for non-nested competitive models. Jin and Lee (2013) establish such a test

for the selection of linear spatial autoregressive (SAR) models. Here we develop the Cox

tests for the Tobit models. Comparing with such tests for linear SAR models, as the Tobit

model with complete information is a nonlinear model with spatial (or social) correlation,

asymptotic distributions of the Cox test statistics need to be rigorously analyzed. We

establish the asymptotic normality of the Cox tests based on the spatial Near-Epoch
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Dependence (NED) asymptotics in Jenish and Prucha (2012).

As an empirical application, we study the property tax rates for contiguous municipal-

ities in North Carolina. Tax competition among local governments has been theoretically

and empirically studied in the public economics literature (see Brueckner(2003) for a

comprehensive review). Most researches consider a tax rate as a continuous variable.

However, it is more appropriate to adopt the Tobit model as local governments’ choices

are subject to the non-negative constraint and some shares of sample observations across

regions are zeros. More recently, Porto and Revelli(2013) evaluate three empirical ap-

proaches to the analysis of spatially dependent limited tax policies. Their Tobit type

models are based on interactions with latent variables and/or spatial time lags, which

are different from ours. We model property tax rates as equilibrium outcomes from a

static simultaneous-move game with complete information and rational expectations un-

der incomplete information. For the estimation of incomplete information model, we

use the nested fixed point ML method to evaluate the expectation functions proposed

in the paper. For the complete information model, the likelihood function is derived in

Xu and Lee (2015) where computation is relatively simpler. For the sample of municipal

property tax rates in North Carolina, we find the existence of strong competition among

near-by municipalities for both models with incomplete and complete information. How-

ever, our Cox test statistics reject the incomplete information model and are in favor of

the complete information one.

This paper proceeds as follows. In Section 2, we build the model with incomplete

information and compare it with the complete information one. There we also show that

both models can be explained by simultaneous-move games. The Cox test statistics to

discriminate the two models are presented in Section 3. Asymptotic distributions of the

Cox test statistics are rigorously established. Their computations are also discussed there.

Simulation results of the Monte Carlo experiments are presented in Section 4. Section 5

concentrates on the empirical study of the tax competition among municipalities in North

Carolina. Section 6 concludes. Equilibrium expectations, parameter identification, and
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calculations in the relatively new model with incomplete information as well as the details

about the Cox tests are in the Appendices. Detailed proofs and results for additional

Monte Carlo experiments can be found in the online supplementary files.

2 The Tobit Models

2.1 Model Frameworks: Complete vs. Incomplete Information

Consider n agents, i = 1, · · · , n, who are socially linked. Their social relations are

represented by an n × n weighting matrix, Wn, such that for all i 6= j, its (i, j) entry,

Wn,ij > 0, if i connects with j; Wn,ij = 0 otherwise. The diagonal elements, Wn,ii = 0

for all i = 1, · · · , n. Wn may be either symmetric or asymmetric. For example, when Wn

represents a friendship network, Wn,ij = 1 if i views j as one of her friends; and Wn,ij = 0

otherwise. When friendship is mutual, the network is undirected and Wn is symmetric.

However, if friendship is not mutual, it is possible that i regards j as one of her friends,

but j does not think i is among her friends. Then Wn,ij 6= Wn,ji, the network is direct

and Wn is asymmetric. In spatial econometrics, an example is the relative strength of

spatial interactions among regions (e.g., counties). In that case, Wn,ij for i 6= j may be

the reciprocal of the geographic distance between two different counties. Formulated in

this way, Wn is symmetric. However, in practice (as in empirical studies of SAR models),

once it is row-normalized, Wn would in general be asymmetric. For our models, both

direct and indirect networks are allowed.

With the scenario that agents are socially interacted and outcomes of agents, yi’s, are

subject to the nonnegative constraint, one may consider the following model:

yi = max
{
x
′

iβ + λỹ−i + εi, 0
}
, (2.1)

for i = 1, 2, · · · , n. xi’s are exogenous explanatory variables for i, which are observable

by econometricians. Relevant characteristics of i not observed from a data set are in-

corporated into the term, εi, which can be viewed as an idiosyncratic shock to agent

i. What distinguishes this framework from the classical Tobit model is the term, λỹ−i,

where the parameter, λ, represents the interaction intensity and the variable, ỹ−i, repre-

sents the influences on yi from the observed or expected outcomes of agents (other than
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i) who are linked to i. There are more than one way to specify ỹ−i based on different

information structures. Under the assumption of complete information, every agent in a

network knows all relevant features, xi’s and εi’s, of all other members. However, under

incomplete information, the unobservable εi is revealed only to i herself and only some

exogenous characteristics in xi’s may be privately known by some other members. Take

the case of interactions among students on academic performances as an example. Gen-

der of a student is publicly known to all students and observed in a data set. For the

high school GPA, although the econometrician can observe its value, an individual may

know some but not all the values of her classmates.

With complete information, Xu and Lee (2015) model interactions as follows:

yi = max

{
x
′

iβ + λ
∑
j 6=i

Wn,ijyj + εi, 0

}
, (2.2)

which corresponds to assuming ỹ−i =
∑

j 6=iWn,ijyj in Eq. (2.1). That is to say, under

complete information, the outcome of an agent is directly influenced by outcomes of all

agents who she is associated with. The model in Eq. (2.2) will be referred to as Model 1

in short.

Under incomplete information, an agent needs to make predictions on others’ out-

comes based on her available information when making her own decision. In their work on

social interactions with a general form of incomplete information, Yang and Lee (2016a)

assume that the impact of j on i’s outcome is through i’s expectation about j’s outcome

based on i’s private information. As private information may be asymmetric across dif-

ferent agents, their model has the feature of expectation heterogeneity. Applying their

framework to truncated outcomes is to assume that ỹ−i =
∑

j 6=iWn,ijE[yj|·], where · refers

to the proper information set possessed by i. To specify an information set, one may

classify exogenous characteristics in xi observed by econometricians into three categories,

group features, Xg; commonly known individual characteristics, Xc = (xc
′

1 , · · · , xc
′
n )
′
; and

some personal traits which might not be publicly known, Xp = (xp
′

1 , · · · , xp
′
n )
′
. That is,

xi = (xc
′
i , x

p′

i , x
g′)
′
. The information set of the individual i can be represented by an n×1

vector Ji to represent her private information about Xp. That is, Ji(j) = 1 if xpj is known
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by i; and Ji(j) = 0 otherwise. xpJi then represents the random vector composed of those

xpj ’s that i knows. For simplicity, use Z to collect all public information, including group

features, Xg, commonly known individual traits, Xc, the social relations, Wn, as well as

the information structure, J1, · · · , Jn. With such an incomplete information structure,

the interaction Tobit model can be modeled as below:

yi = max

{
β0 + xc

′

i β1 + xp
′

i β2 + xg
′
β3 + λ

∑
j 6=i

Wn,ijE[yj|xpJi , Z] + εi, 0

}
. (2.3)

The model in Eq.(2.3) will be referred to as Model 2.3

An inspection of Eq.(2.2) and Eq.(2.3) reveals that in Model 1, although i’s outcome

can be affected by the outcomes of her socially associated agents directly, that happens

only for those outcomes not censored. From Qu and Lee (2013a) and Xu and Lee (2015),

if the agents whose outcomes are not censored are picked out, their outcomes are socially

related within a sub-network; but the censored outcomes are affected by the uncensored

outcomes with social relations, which distinguish the complete information Tobit model

with social interactions from the linear SAR model. In Model 2, nonetheless, i’s out-

come will be affected by the expectations of every other agents whom she is associated

with, no matter whether their actual outcomes are censored or not. Therefore, the two

different types of information structures, complete vs. incomplete, will result in different

implications on social interactions.

2.2 Game Theoretical Foundation

The above framework for Tobit models with social interactions can be related to a

simultaneous-move game where values of actions are bounded below by zero to satisfy the

nonnegative constraint. Denote the action taken by agent i by ai. Assume that ai ≥ 0.

Her payoff is determined by a quadratic function of her own action:4

r(ai, a−i, xi) = α− γ(ai − x
′

iβ − λ
∑
j 6=i

Wn,ijaj − εi)2. (2.4)

Under complete information, the strategy of a player is just to choose an action. A NE is

a profile of strategies such that everyone is making her best response to others’ strategies.

Given actions of others a−i, the best response of i is a∗i (a−i) = max
{
x
′
iβ1 + λ

∑
j 6=iWn,ijaj + εi, 0

}
.

Hence, an equilibrium outcome is just represented by Model 1 with Eq. (2.2). It is shown

7



by Xu and Lee (2015) that when |λ|‖Wn‖∞ < 1, where ‖Wn‖∞ = max1≤i≤n
∑n

j=1 Wn,ij,

there will be a unique NE.

Under incomplete information, εi is observed only by i herself and also xi = (xc
′
i , x

p′

i , x
g′)
′
;

but xpi ’s may not be publicly observable to all players. From Harsanyi (1967a; 1967b),

incomplete information can be interpreted by unknown “types”. Let Si represent the

support of xpi and T denote the common support of εi’s. The set of states,
∏n

i Si × T n,

is defined as the set of possible values of xpi ’s and εi’s for all players. In this case, player

i’s “type” is her private information about exogenous characteristics, xpJi , and shock, εi.

Hence, her type set is the corresponding support, Ri =
∏

k:Ji(k)=1 Sk×T . The signal func-

tion is a mapping from the set of states to her type, τi :
∏n

i Si×T n →
∏

k:Ji(k)=1 Sk×T .

Her prior belief on the set of states is the joint distribution of xpi ’s, and the distribution

for shocks. The prior belief is the same across all players. A strategy is a plan specifying

an action for each possible realization of her type. That is, si : Ri → Ai, where Ai is i’s

set of actions.

Because players move simultaneously, they do not know which actions others will take

when they are making their own decisions. They can only form expectations based on

their private information. The expected payoff by taking action ai is as follows:

E[r(ai, a−i, x
g, xci , x

p
i )|x

p
Ji
, Z, εi]

=α− γ(ai − β0 − xc
′

i β1 − xp
′

i β2 − xg
′
β3 − λ

∑
j 6=i

Wn,ijE[aj|xpJi , Z]− εi)2

+ γλ2
(

(
∑
j 6=i

Wn,ijE[aj|xpJi , Z])2 − E[(
∑
j 6=i

Wn,ijaj)
2|xpJi , Z]

)
,

where the expectation on aj does not depends on εi, because εi’s are mutual independent

and also independent of X and Wn. Suppose that γ > 0, if there is no restriction on ai,

the agent’s best response is to choose the ideal value,

a∗i = β0 + xc
′
β1 + xp

′

i β2 + xg
′
β3 + λ

∑
j 6=i

Wn,ijE[aj|xpJi , Z] + εi.

However, with the constraint, ai ≥ 0, it is possible to have a corner solution. The

optimal action is ai = max {a∗i , 0}. Thus, (s1(xpJ1 , ε1), · · · , sn(xpJn , εn)) is a Bayesian Nash
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Equilibrium (BNE) characterized by

si(x
p
Ji
, εi) = max

{
β0 + xc

′

i β1 + xp
′

i β2 + xg
′
β3 + λ

∑
j 6=i

Wn,ijE[sj(x
p
Jj
, εj)|xpJi , Z] + εi, 0

}
,

for all i = 1, · · · , n. Therefore, yi’s in Model 2 with Eq.(2.3) can be viewed as realizations

of actions of a BNE. Applying the general analysis of Yang and Lee (2016a), we can

derive sufficient conditions for the existence of a unique BNE. A key condition is also

that |λ|‖Wn‖∞ < 1, as in the complete information game. Intuitively, this condition

means that the intensity of social interactions is moderate.

Xu and Lee (2015) discuss extensively the identification and estimation of Model

1. Because of the direct influence of outcomes among socially connected agents, the

likelihood of an individual’s action (or outcome) is not independent of those of others. Xu

and Lee (2015) show that under generic conditions, the NED property of spatial process

in Jenish and Prucha (2012) can be established and the ML estimator is consistent and

asymptotically normal. Applying the theoretical analysis by Yang and Lee (2016a) to

Model 2, it can also be shown that parameters in that model can be identified under some

generic conditions. Different from the complete information model, in the incomplete

information case, the individual likelihoods are independent of each other, which makes

large sample properties of esimators for Model 2 simpler to be derived than those of Model

1. However, as pointed out by Yang and Lee (2016a), computing the sample likelihood

function of Model 2 requires the calculation of equilibrium conditional expectations, which

are characterized as a functional fixed point. As a result, they propose the estimation of

parameters by nesting a fixed point iteration algorithm inside a ML estimation. This is

analogous to the NFXP algorithm proposed by Rust (1987) for dynamic decision making

problems. The estimation of Model 2 is more computationally involved than that of Model

1. Details on how to apply the theory for incomplete information models in Yang and

Lee (2016a) to censored outcomes can be found in Appendix A. Numerical methods for

computing the equilibrium conditional expectations are elaborated in the supplementary

file to this paper.
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3 Cox Type Tests

As different information structures may imply different interaction effects, it is of signifi-

cance to provide formal statistical criteria by which to select between them. For example,

consider the tax competition among adjacent municipalities. Intuitively, both scenarios

are possible. It is reasonable to assume that a local municipal committee knows the finan-

cial and residential features of all the municipalities in the same state when setting tax

rates. Nonetheless, as municipalities set new tax rates of a new fiscal year before detailed

financial and demographical reports for local jurisdictions are published, it is plausible

that some features about the residence of a city is privately known by the government of

this city or some of its neighbors but not by other local jurisdictions in the same state.

In the empirical study of Section 5, the estimated interaction intensities differ between

the model with complete information and the one with incomplete information. The es-

timation results also show that the model predictions change when different information

structures are used. Thus, it is a question of theoretical and empirical importance on

which information structure to select given a data set. As far as we know, there has

been hardly any formal test to select information structures in game estimation with an

exception by Gireco (2014). In a model of market entry, Gireco (2014) assumes that

an entry cost of a player is affected by two types of shocks (unobserved by econometri-

cians): one is observed by all the players and another is the shocks observed by herself.

The relative variance of the shock of the first type compared to the second one plays

as an indicator of information structures. The case that it is equal to 0 corresponds to

incomplete information; and the case that it is equal to 1 (after normalization) indicates

complete information. As the full model nests the models of complete and incomplete

information in a same framework, a model with a complete (or incomplete) information

will be rejected if its estimates are outside of a confidence region of the full model at

a certain significance level. This technique, however, does not work when two types of

information structures cannot be nested in a same framework, such as the Tobit models

with social interactions with complete vs. incomplete information, where different infor-
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mation structures change the dependence among outcomes in a nonlinear way. In this

paper, we propose a Cox type test, which is a non-nested test for competitive models

based on estimated sample likelihoods.

3.1 Log Likelihoods and Test Statistics

In the following discussion, to distinguish between Model 1 and Model 2, let m be 1

or 2 respectively, as an index for Model 1 or Model 2. Assume that the error terms

εm,i’s are i.i.d. normally distributed with zero mean and variance of σ2
m as in Qu and

Lee (2013a) and Xu and Lee (2015). Denote Yn = (y1, ..., yn)′ and Xn = (Xc
n, X

p
n, X

g) =

(x1, ..., xn)′. Let θm = (δ
′
m, θ

′
x)
′

for m = 1 or 2, where δm = (λm, β
′
m, σm)′ and θx is

a finite dimensional parameter vector in the conditional density (or probability for a

discrete variable) f(Xp
n|Xc

n, X
g, θx) of Xp

n conditional on Xc
n and Xg. θx is the same in

the two models, but δm and θm are parameters of Model m. The joint distribution of

(Yn, Xn) under Model m is fm(Yn, Xn|θm) = fm(Yn|Xn, θm) ·f(Xp
n|Xc

n, X
g, θx) ·f(Xc

n, X
g).

Under Model m, let Lfullmn (θm) = ln f(Yn, Xn|θm) be the joint log likelihood function and

Lmn(θm) = ln fm(Yn|Xn, θm) be the log likelihood function of Yn conditional on Xn. Then

for Model 1,

L1n(θ1) = ln f1(Yn|Xn, δ1) =
n∑
i=1

I(yi = 0) ln Φ(−γ1i(δ1|Yn, Xn)) + ln |In − λ1Gn(Yn)WnGn(Yn)|

−1

2

n∑
i=1

I(yi > 0)[ln(2πσ2
1) + (

yi
σ1

− γ1i(δ1|Yn, Xn))2]

with γ1i(δ1|Yn, Xn) = (λ1wi.Yn + x′iβ1)/σ1, wi. being the ith row of Wn, and Gn(Yn) =

diag{I(y1 > 0), ..., I(yn > 0)}. For this model, we can see that δ1 appears in the density of

f1(Yn|Xn, δ1); but θx in f(Xp
n|Xc

n, X
g, θx) does not enter into the conditional distribution

of Yn on Xn. For Model 2,

L2n(θ2) = ln f2(Yn|Xn, δ2, θx) =
n∑
i=1

I(yi = 0) ln Φ(−γ2i(δ2, θx))

− 1

2

n∑
i=1

I(yi,n > 0)[ln(2πσ2
2) + (

yi
σ2

− γ2i(δ2, θx))
2],

with γ2i(δ2, θx) = [λ2

∑
j 6=iWn,ijEθ2(yj|x

p
Ji
, Z) + x′iβ2]/σ2. For this model, we see that

both δ2 and θx appear in the density f2(Yn|Xn, δ2, θx) as θx is used for the expectation of

yj’s given the information set xpJi .
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For relatively computationally simper estimation of these models, we suggest the use

of a two-step estimation. In the first step, we may use data available for Xp
n and estimate

θx based on its stochastic structure f(Xp
n|Xc

n, X
g, θx), such as the ML estimation when

f(Xp
n|Xc

n, X
g, θx) has a known function form. Otherwise, it can be estimated by some

other methods, such as GMM. Suppose the estimator θ̂xn of θx is
√
n consistent with

√
n(θ̂xn − θx0)

d→ N(0, V2) for some positive definite matrix V2, which holds regardless

the DGP of Yn is from Model 1 or Model 2. For the second step estimation, δm can

be estimated as δ̂mn = arg maxδm∈∆m Lmn(δm, θ̂xn)5, with ∆m being the parameter space

of δm. Then the two step ML estimator for θm is θ̂mn = (δ̂′mn, θ̂
′
xn)′. Let Lmn(δm, θx :

θl) =
∫
Lmn(δm, θx)fl(Yn|θl, Xn)dYn be the conditional expectation of Lmn(δm, θx) and

δmn(θl) = arg maxδm∈∆m Lmn(δm, θx : θl) be the pseudo-true value of δm when the model

l with parameter θl = (δ′l, θ
′
x)
′ generates the data. Denote the pseudo true value of θm

when the Model l is the DGP as θmn(θl) = (δmn(θl)
′, θ′x)

′.

The Cox test is based on the recentered log likelihood ratio, i.e., Lfullmn (δ̂mn, θ̂xn) −

Lfullln (δ̂ln, θ̂xn), subtracting its expectation. As Lfullmn (δm, θx) is the sum of three terms,

Lmn(δm, θx), ln f(Xp
n|Xc

n, X
g, θx), and ln f(Xc

n, X
g), where the second and third terms

are the same under the two models, Lfullmn (δm, θx) − Lfullln (δl, θx) = Lmn(θm) − Lln(θl).

The difference of the full log likelihood comes only from the first term, i.e., the log

likelihood function of Yn conditional on Xn. Therefore, the corresponding Cox test can

be constructed using the conditional log likelihoods. To test Model 1 being the true

model, the Cox test statistic is based on

1√
n

(
L2n(δ̂2n, θ̂xn)− L1n(δ̂1n)− [L2n(δ2n(θ̂1n), θ̂xn : θ̂1n)− L1n(δ̂1n : θ̂1n)]

)
or

1√
n

(
L2n(δ̂2n, θ̂xn)− L1n(δ̂1n)− [L2n(δ̂2n, θ̂xn : θ̂1n)− L1n(δ̂1n : θ̂1n)]

)
;

to test Model 2 being the true one, the Cox test statistic is based on

1√
n

(
L1n(δ̂1n)− L2n(δ̂2n, θ̂xn)− [L1n(δ1n(θ̂2n) : θ̂2n)− L2n(δ̂2n, θ̂xn : θ̂2n)]

)
or

1√
n

(
L1n(δ̂1n)− L2n(δ̂2n, θ̂xn)− [L1n(δ̂1n : θ̂2n)− L2n(δ̂2n, θ̂xn : θ̂2n)]

)
.
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The first expression for testing either Model 1 or Model 2 is the original version of the

Cox (1961,1962) test, while the second one corresponds to Atkinson (1970) version.

These Cox (1961,1962) and Atkinson (1970) versions, are asymptotically equivalent

because

1√
n

(
Lmn(δ̂mn, θ̂xn : θ̂ln)− Lmn(δmn(θ̂ln), θ̂xn : θ̂ln)

)
=

1

2n

(
δmn(θ̂ln)− δ̂mn

)′ ∂2Lmn(δ̃mn, θ̂xn : θ̂ln)

∂δm∂δ′m

√
n
(
δmn(θ̂ln)− δ̂mn

)
= op(1),

where δ̃mn is a value between δ̂mn and δmn(θ̂ln). The last “= op(1)” holds because

∂2Lmn(δ̃mn,θ̂xn:θ̂ln)
n∂δm∂δ′m

= Op(1) and

δ̂mn−δmn(θ̂ln) = δ̂mn−δmn(θl0)+δmn(θl0)−δmn(θ̂ln) = Op(
1√
n

)+
∂δmn(θ̃ln)

∂θ′l
(θl0−θ̂ln) = op(1).

Here, ∂δmn(θl)
∂θ′l

= −
(
∂2Lmn(δm,θx:θl)

n∂δm∂δ′m

)−1
∂2Lmn(δm,θx:θl)

n∂δm∂θ′l
|δm=δmn(θl)

is bounded, because δmn(θl)

is the unique solution of ∂Lmn(δm, θx : θl)/∂δm = 0 and we can apply the implicit function

theorem.

3.2 Test Statistics Distribution

As the large sample theory on NED spatial processes in Xu and Lee (2015) is general, it

can be applied to derive the asymptotic distributions of the Cox test statistics for both

Model 1 and Model 2. Under the null hypothesis that the data is generated from Model

1,

Cox1(Yn, Xn) =
1√
n

(
L2n(δ̂2n, θ̂xn)− L1n(δ̂1n)− [L2n(δ̂2n, θ̂xn : θ̂1n)− L1n(δ̂1n : θ̂1n)]

)
=

1√
n

n∑
i=1

[q1i(θ10)− Eθ10(q1i(θ10))] + op(1)
d→ N

(
0, lim

n→∞

1

n
Vθ10(

n∑
i=1

q1i(θ10))

)
;

under the null hypothesis that the data is generated from Model 2,

Cox2(Yn, Xn) =
1√
n

(
L1n(δ̂1n)− L2n(δ̂2n, θ̂xn)− [L1n(δ̂1n : θ̂2n)− L2n(δ̂2n, θ̂xn : θ̂2n)]

)
=

1√
n

n∑
i=1

[q2i,n(θ20)− Eθ20(q2i(θ20))] + op(1)
d→ N

(
0, lim

n→∞

1

n
Vθ20(

n∑
i=1

q2i(θ20))

)
,

where both the expressions of q1i(θ10) and q2i(θ20) can be found, respectively, in Eq. B.5

and Eq. B.6 of the Appendix. The derivation is discussed in detail in Appendix B.
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3.3 Test Statistics Calculation

In general, it is demanding to derive an analytic form of the variances of the Cox test

statistics. We employ the bootstrap method to construct them numerically.6

Consider the null hypothesis that Model 2 with θ20 is the true model. Treat Xc
n, X

g,

and Xp as fixed. The Cox test statistic can be constructed step by step as follows:

1. Use the first step estimator θ̂xn to generate a bootstrapped sample X
p,(b)
n and do

estimation to get the first step estimate θ̂
(b)
xn , where b represents a bootstrap step.

By repeating bootstraps, we have a sequence of consistent bootstrapped estimators

of θ̂xn.

2. Use the second step MLE δ̂2n together with θ̂xn and the original sample data

Xn = (Xc
n, X

p
n, X

g) to generate a bootstrapped sample Y
(b)

2n from Model 2 as if

θ̂2n = (δ̂′2n, θ̂
′
xn)′ is the true parameter vector. More specifically, we generate Y

(b)
2n =

(y
(b)
21 , ..., y

(b)
2n )′ from θ̂2n: y

(b)
2i = max(0, λ̂2n

∑
j 6=iWn,ijE

θ̂2n
(y2j|xpJi , Z) + x′iβ̂2n + ε

(b)
2i ),

where ε
(b)
2i ∼ N(0, σ̂2

2n), to calculate the conditional log likelihood functions

L
(b)
1n(δ1|Y (b)

2n , Xn) =
n∑
i=1

I(y
(b)
2i = 0) ln Φ(−γ(b)

1i (δ1|Y (b)
2n , Xn)) + ln |In − λ1G(Y

(b)
2n )WnG(Y

(b)
2n )|

− (1/2)
n∑
i=1

I(y
(b)
2i > 0)

(
ln(2πσ2

1) + (y
(b)
2i /σ1 − γ(b)

1i (δ1|Y (b)
2n , Xn))2

)
;

L
(b)
2n(δ2, θx|Y (b)

2n , Xn) =
n∑
i=1

I(y
(b)
2i = 0) ln Φ[−γ(b)

2i (θ2|Xn)]

− (1/2)
n∑
i=1

I(y
(b)
2i > 0)

(
ln(2πσ2

2) + [y
(b)
2i /σ2 − γ(b)

2i (θ2|Xn)]2
)
,

where γ
(b)
1i (δ1|Y (b)

2n , Xn) = [λ1wi.Y
(b)

2n + x′iβ1]/σ1 and

γ
(b)
2i (θ2|Xn) = [λ2

∑
j 6=i

Wn,ijEθ2(yj|x
p
Ji
, Z) + x′iβ2]/σ2,

with Eθ2(yj|x
p
Ji
, Z) being a function of all information available which does not

change with bootstrap sample b.7

3. Use the generated vector Y
(b)

2n to do the second step ML estimation for both Models

1 and 2 to get bootstrapped estimates δ̂
(b)
1n and δ̂

(b)
2n . To be more specific,

δ̂
(b)
2n = arg max

δ2
L

(b)
2n(δ2, θ̂

(b)
xn |Y

(b)
2n , Xn), and δ̂

(b)
1n = arg max

δ1
L

(b)
1n(δ1|Y (b)

2n , Xn).
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4. For each b, generate a total number of S n-dimensional vectors of Y
(sb)

2n from Model

2 by using Xn and treat θ̂
(b)
2n = (δ̂

(b)′
2n , θ̂

(b)′
xn )′ as ‘true’ parameter vector

y
(sb)
2i = max(0, λ̂

(b)
2n

∑
j 6=i

Wn,ijE
θ̂
(b)
2n

(y2j|xpJi , Z) + x′iβ̂
(b)
2n + ε

(sb)
2i ),

where ε
(sb)
2i ∼ N(0, σ̂

(b)2
2n ), sb = 1, ..., S. With these, we can approximate L1n(δ̂

(b)
1n :

θ̂
(b)
2n ) by the empirical mean as L̂S,1n(δ̂

(b)
1n : θ̂

(b)
2n ) ≡ (1/S)

∑S
sb=1 L

(sb)
1n (δ̂

(b)
1n |Y

(sb)
2n , Xn),

and similarly for L2n(δ̂
(b)
2n , θ̂

(b)
xn : θ̂

(b)
2n ).8

5. Compute the value of the statistic

Cox2(θ̂(b)
n |Y

(b)
2n , Xn) =

1√
n

(
L1n(δ̂

(b)
1n |Y

(b)
2n , Xn)− L2n(δ̂

(b)
2n , θ̂

(b)
xn |Y

(b)
2n , Xn)

)
− 1√

n

1

S

S∑
sb=1

[L
(sb)
1n (δ̂

(b)
1n |Y

(sb)
2n , Xn)− L(sb)

2n (δ̂
(b)
2n , θ̂

(b)
xn |Y

(sb)
2n , Xn)]

6. Repeat steps 1) - 5) for many times to have B values of the statistics.

7. Order the statistics to get the upper α quantile critical value cB1−α. Reject the null

of Model 2 if Cox2(θ̂n|Yn, Xn) > cB1−α. This is equivalent to reject the null if

(1/B)
∑B

b=1 I(Cox2(θ̂
(b)
n |Y (b)

2n , Xn) > Cox2(θ̂n|Yn, Xn)) < α.

A bootstrap version of the Cox test statistics under the hypothesis that Model 1 with

θ10 is the true model can be constructed in an analogous way:

1. Use the second step MLE δ̂1n and the original sample data Xn = (Xc
n, X

g, Xp
n) to

generate sample Y
(b)

1n from Model 1 as if δ̂1n is the true parameter vector, where b

represents a bootstrap step. From this, we generate Y
(b)

1n = (y
(b)
11 , ..., y

(b)
1n )′ from δ̂1n:

y
(b)
1i = max(0, λ̂1n

∑
j 6=i

Wn,ijy
(b)
1j + x′iβ̂1n + ε

(b)
1i ),

where ε
(b)
1i ∼ N(0, σ̂2

1n), to calculate the conditional log likelihood functions

L
(b)
1n(δ1|Y (b)

1n , Xn) =
n∑
i=1

I(y
(b)
1i = 0) ln Φ[−γ(b)

1i (δ1|Y (b)
1n , Xn)] + ln

∣∣∣In − λ1G(Y
(b)

1n )WnG(Y
(b)

1n )
∣∣∣

−1

2

n∑
i=1

I(y
(b)
1i > 0)[ln(2πσ2

1) + (
y

(b)
1i

σ1

− γ(b)
1i (δ1|Y (b)

1n , Xn))2] and

L
(b)
2n(δ2, θx|Y (b)

1n , Xn) =
n∑
i=1

I(y
(b)
1i = 0) ln Φ[−γ(b)

2i (θ2|Xn)]

−1

2

n∑
i=1

I(y
(b)
1i > 0)

(
ln(2πσ2

2) + [
y

(b)
1i

σ2

− γ(b)
2i (θ2|Xn)]2

)
,
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where γ
(b)
1i (δ1|Y (b)

1n , Xn) = [λ1wi.Y
(b)

1n +x′iβ1]/σ1 and γ
(b)
2i (θ2|Xn) = [λ2

∑
j 6=iWn,ijEθ2

(yj|xpJi , Z)+

x′iβ2]/σ2 as before.

2. Use the generated vector Y
(b)

1n to get the second step ML estimates δ̂
(b)
1n and δ̂

(b)
2n , re-

spectively, for both Models 1 and 2. To be more specific, δ̂
(b)
2n = arg maxδ2 L

(b)
2n(δ2, θ̂

(b)
xn |Y (b)

1n , Xn)

and δ̂
(b)
1n = arg maxδ1 L

(b)
1n(δ1|Y (b)

1n , Xn), where θ̂
(b)
xn is the same as before.

3. For each b, generate a total number of S n-dimensional vectors of Y
(sb)

1n from Model

1 by using Xn and treat δ̂
(b)
1n as the ‘true’ parameter vector

y
(sb)
1i = max(0, λ̂

(b)
1n

∑
j 6=i

Wn,ijy
(sb)
1j + x′iβ̂

(b)
1n + ε

(sb)
1i ),

where ε
(sb)
1i ∼ N(0, σ̂

(b)2
1n ), sb = 1, ..., S. From these, we approximate L1n(δ̂

(b)
1n : δ̂

(b)
1n )

by the empirical mean as L̂S,1n(δ̂
(b)
1n : δ̂

(b)
1n ) ≡ 1

S

∑S
sb=1 L

(sb)
1n (δ̂

(b)
1n |Y

(sb)
1n , Xn), and simi-

larly for L2n(δ̂
(b)
2n , θ̂

(b)
xn : δ̂

(b)
1n ). Or we can use the analytical expression of L2n(δ2, θx :

θ2).

4. Compute the value of the statistic

Cox1(θ̂(b)
n |Y

(b)
1n , Xn) =

1√
n

(
L2n(δ̂

(b)
2n , θ̂

(b)
xn |Y

(b)
1n , Xn)− L1n(δ̂1n|Y (b)

1n , Xn)
)

− 1√
n

1

S

S∑
sb=1

[L
(sb)
2n (δ̂

(b)
2n , θ̂

(b)
xn |Y

(sb)
1n , Xn)− L(sb)

1n (δ̂
(b)
1n |Y

(sb)
1n , Xn)]

5. Repeat steps (1) - (4) for many times to have B values of the statistics.

6. Reject the null if (1/B)
∑B

b=1 I(Cox1(θ̂
(b)
n |Y (b)

1n , Xn) > Cox1(θ̂n|Yn, Xn)) < α.

The above numerical approximations are justified to be valid in Appendix C

4 Monte Carlo Experiments

We investigate finite sample performance of the NFXP ML estimation and Cox tests via

Monte Carlo experiments. In the experiments, observed group features in Xg are irrele-

vant and hence, absent, for simplicity. The idiosyncratic shocks, εi’s, are i.i.d. N(0, σ2).

We focus on the estimation of the coefficient of the intercept, β0, individual commonly

known characteristics, β1, private personal features, β2, the interaction intensity among

socially associated agents, λ, and the standard deviation of the idiosyncratic shocks, σ.
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Their true values are β0 = 0, β1 = 1, β2 = 1, and σ = 1. Both small interaction intensity,

λ = 0.3, and intermediate one, λ = 0.6, are considered. The generation of the spatial

weights matrix and regressors is described next.

For the social networks matrixWn, where n is the population size of the whole network,

Wn,ij = 1 if agent i links to agent j, where i 6= j; and Wn,ij = 0 otherwise. As usual,

Wn,ii = 0 for all i = 1, · · · , n. Then we row-normalize Wn such that the sum of each row

is equal to 1. In the experiments, a sample is composed of a collection of independent

groups. Consequently, Wn can be organized as a block-diagonal matrix, with each block

representing social relations in one group. We assume that all groups have the same size,

20. Within a group, for every agent, 15 other agents are randomly selected to be linked

to her. The number of groups, G, is either 10 or 40.9

The commonly known individual characteristics, xci ’s, are generated as independent

standard normal variables for different agents. For xpi , we focus on the case that xpi ’s

are continuously distributed.10 Suppose that xpi,g = αg + εpi,g, for g = 1, · · · , G and

i = 1, · · · , n, where αg’s are i.i.d. N(µ, σ2
1) and εpi,g’s are i.i.d. N(0, σ2

2) and independent

of αg’s. Then within a group g, (xp1,g, · · · , xpn,g)
′

is jointly normal with a common mean

µ, a common variance η2, and a common correlation coefficient ρ for any xpi,g and xpj,g

with i 6= j, where η2 = σ2
1 + σ2

2 and ρ = σ2
1/(σ

2
1 + σ2

2). For any i 6= j, given xpj,g = x, xpi,g

is N(ρx+ (1− ρ)µ, (1− ρ2)η2). For the Monte Carlo study, we choose µ = 1, η = 2, and

ρ = 0.4. While values of those parameters are known to agents, econometricians need to

estimate them from observed data. In this situation, we adopt a two-step estimation. We

first estimate µ, η, and ρ from Xp
i,g’s. Those estimates are consistent, when the number of

independent groups, G, increases to∞. We then plug those estimates into the likelihood

of y and use the NFXP ML method for the second step estimation.11

Two information structures are considered. One is complete information. The other

is incomplete information where xpi is observed by i but not any other group members.

In the experiment, we generate data from both information structures. Once a data set

is generated, we do estimation under both the true and wrong information structures,
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computing the estimated likelihoods and the values for the information criteria, and also

compute the Cox test statistics using the aforementioned bootstrap method.

For each information structure (complete and incomplete) and interaction intensity

(λ = 0.3 and λ = 0.6), there are 500 repetitions. Empirical means and standard de-

viations of estimates are summarized in Tables 1 to 2. From those two tables, it can

be seen that the NFXP ML estimation algorithm performs well for both Tobit models.

Comparing the estimates of the two models, the complete information model has more

accurate estimates. This may be due to more information is available in the complete

information model relative to the incomplete one. As the sample size increases, the (em-

pirical) standard deviations for estimates decrease accordingly. In addition, it can also

be seen that estimation under a wrong information structure can bring in larger biases.

Moreover, estimation under the true information structure can lead to larger estimated

sample log likelihoods. That provides a hint on using estimated sample likelihoods to

formally build a test statistics for information structures.

The results for the Cox tests computed using the bootstrap method for the samples

are tabulated in Table 3. The number of bootstrap samples is B = 100. For each

bootstrapped sample, the expected log likelihood is approximated by the mean of Monte

Carlo simulated log likelihoods with S = 100 for each. The test for each value of the

interaction intensity and with the true information structure from which the data is

generated, the first two columns in Table 3 show the size and the last two columns

show the power of the Cox test at three different levels of significance. Empirical sizes

are close to the theoretical ones. The power of the test when the data is generated from

Model 2 (incomplete information) is a bit small for small interaction intensity but become

much larger for the intermediate interaction intensity, λ = 0.6. That is intuitive, as the

difference between Model 1 and Model 2 resides in the way that interaction effects are

specified. They would be identical if λ = 0. As the interaction intensity grows, it will

be easier to distinguish between the two models. The power also increases as the sample

size increases.
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5 Empirical Application

We apply our model to study the relationship of property taxes for adjacent municipalities

in North Carolina. By Bordigon et al. (2003), there are three ways through which the

local governments’ decisions on tax rates and public spendings are correlated through

a spatial network. The simplest way is through a common shock. The second way is

through information transmission. By comparing local taxes in their region and those

in geographically related or similar regions, voters can assess the performance of their

current local government officials and vote accordingly. As a result, an incumbent gov-

ernment official may take into account policies made by neighboring jurisdictions when

making her own decision, which is called the “yardstick competition”. The third way

of interactions is a mobile tax base. A total tax revenue depends on both the tax rate

per unit property and the tax base (such as residents, firms, and capital). The decision

on tax rate in one jurisdiction will not only affect its own tax revenue but also those of

others spatially related to it. In the case of property taxes, a higher rate of property

tax can increase tax revenue per unit properties owned by its residents. At the same

time, residents may have incentives to move to nearby municipalities which offer lower

tax rates. Therefore, municipalities will act strategically to compete for taxable proper-

ties. According to Wilson and Wildasin (2004), the third one is the real tax competition.

It is noted by Bordigon et al. (2003) that it is more suitable to model the “yardstick

competition” by the spatial error (SE) model, as it is through the information about

unobservables that taxes of different regions are related. For the competition through

a mobile tax base, i.e., the third type, it is more suitable to model the competition by

a SAR model. In this paper, our empirical application is about the property tax rates

set by municipalities in North Carolina. Inspecting the data set, we can see that the

tax rates are all non-negative, with some of them equal to 0’s. As a result, it is more

reasonable to use a Tobit type model framework.

We focus on the case that taxes are determined through a “strategical” competition,

i.e., the third type above. Therefore, we use the framework of a simultaneous move

19



game in Section 2. Consider n municipalities in a state. They are related according to

geographic vicinity, represented by an n × n matrix Wn. For any two different cities,

i 6= j, Wn,ij = Wn,ji = 1 if the distance between them is less than some cutoff value;

and Wn,ij = Wn,ji = 0 otherwise. As usual, Wn,ii = 0, for all i.12 We use ai to denote

the rate of property tax set by city i. A tax rate must be non-negative, i.e., ai ≥ 0 for

all i = 1, · · · , n. i’s payoffs by choosing ai when other municipalities choose a−i is given

by (2.4). Under complete information, the outcome of a Nash Equilibrium obeys the

following rule:

ai = max

{
x
′

iβ1 + λ1

∑
j 6=i

Wn,ijaj + εi, 0

}
. (5.1)

Under incomplete information, (a1, · · · , an), is an outcome of BNE and satisfies

ai = max

{
β2,0 + xc

′
β2,1 + xp

′

i β2,2 + λ2

∑
j 6=i

Wn,ijE[aj|xpJi , Z] + εi, 0

}
. (5.2)

Therefore, we may use our model to investigate the problem of tax competition. Assume

that condition |λ|‖Wn‖∞ < 1 is satisfied. Hence, the observed data comes from the

unique equilibrium in this model, which can be solved as a fixed point.

For municipalities in North Carolina, we collect data on property tax rates, govern-

ment finance, and demographics in the 2012 fiscal year as well as geographic statistics

(latitudes and longitudes). Data of city property tax rates are from North Carolina De-

partment of Revenue. Information about municipal government finance comes from North

Carolina Department of State Treasurer. Data about city median household income is

found from “Find theData.org”, which is based on the American Community Survey.

Latitudes and longitudes are found from “CityLatitudeLongitude.com”13 We calculate

distance between any two cities based on latitudes and longitudes, using the Haversine

formula14. Sample statistics are summarized in Table 4. From the table, we find a big va-

riety among the 506 municipalities in the sample in terms of demographics and financial

status. Among those municipalities, the rate of property tax is strictly positive except

for 29 of them where no property taxes are levied.

In defining geographic vicinity, we tried three different cutoff values for distance be-

tween two municipalities, 30 kilometers, 50 kilometers, and 100 kilometers, and estimate
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model parameters under those three associated social weighting matrices. As the popu-

lation of a city is correlated to the base of property tax, probably it affects the municipal

tax rate. Obviously, it is public information. Thus, we include population in Xc. Since

it is possible that a municipal government knows more about the financial situation of

people living in its own territory than other governments do, it is reasonable to include in

Xp residents’ financial data in the current period. In their investigation of public safety

spendings by local governments in North Carolina under a linear SAR model, Yang and

Lee (2016b) take into account the possibility that the municipal median household income

may be private information when local governments are making their own policies. Yang

and Lee (2016b) try different specifications on the generation of the median household in-

come in their empirical analysis. As the focus in this paper is to test whether the median

household income (as well as the idiosyncratic shocks, εi’s) is public information or pri-

vate information, the city median household income is assumed to depend on two factors:

state level median household income and city idiosyncratic income shocks. Let ht denote

the state median household income and εpi,t the city-specific shocks at year t. The median

household income of city i at t, MHIi,t is then determined by MHIi,t = ht+εpi,t. Suppose

that for each t, ht is independent of εpi,t’s and εpi,t’s are i.i.d. N(0, ι2). ht is publicly known

to all municipalities. In addition to a cross section data for municipal median household

incomes in 2012, we collect the time series of the median household income for the state

of North Carolina from 1984 to 2012. Let t = 0, 1, · · · , 28. T = 28 corresponds to the

year 2012. Assume that {ht} is generated from an AR(1) process with a deterministic

time trend:15

ht = ah + bht+ φhht−1 + εht , (5.3)

for t = 1, · · · , T , where ah and bh are constants, |φh| < 1, εht ’s are i.i.d. N(0, ω2). Accord-

ing to Sims, Stock, and Watson (1990), we can reparametrize this process and transform

it into a covariance-stationary time series. Define a∗h = ah/(1− φh)− (bhφh)/[(1− φh)2],

b∗h = bh/(1 − φh), and h∗t = ht − a∗h − b∗ht. Then Eq. (5.3) can be rewritten as follows:

h∗t = φhh
∗
t−1 + εht . {h∗t} is a zero-mean AR(1) process such that each h∗t is N(0,

ω2
h

1−φ2h
).
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Therefore, hT is normally distributed with mean a∗h + b∗hT and variance
ω2
h

1−φ2h
. As a re-

sult, xpi ’s have an exchangeable joint normal distribution, with mean a∗h + b∗hT , variance

η2 = ω2/(1− φ2
h) + ι2, and correlation coefficient, ρ = ω2/[ω2 + (1− φ2

h)ι
2].

Two models under different information structures are estimated. The first scenario

corresponds to the complete information model where municipal populations, median

household incomes, and idiosyncratic shocks εi’s are all known by each local government.

δ = (β
′
, λ, σ)

′
is estimated via MLE. In the second case with incomplete information,

both the median household income MHIi,T and the shock εi are only known by i in the

state. (θ
′
x, δ

′
)
′

is estimated by the 2-step ML algorithm where θx = (φh, a
∗
h, b
∗
h, ω

2, ι2)
′

is estimated in the first step by maximizing the log joint likelihood of Xp and h =

(h1, · · · , hT )
′
. In the second step, δ is estimated from the conditional log likelihood of Y

conditional on Xp using the NFXP ML estimation. The log joint likelihood function of

Xp and h is:

Lxn(θxn;Xp, h) =− n

2
log(2π)− n

2
log(ι2)− 1

2ι2

n∑
i=1

(xpi,T − hT )2 − T

2
log(2π)− T

2
log(ω2)

− 1

2ω2

T∑
t=1

(ht − a∗h(1− φh)− b∗hφh − b∗h(1− φh)t− φhht−1)2.

Define H1(n, T ) ≡ diag((
√
T ,
√
T ,
√
T 3,
√
T ,
√
n)). Similar to Sims, Stock, and Watson

(1990), one can show that the MLE θ̂x,n is consistent and H1(θ̂xn − θ0)
d→ N(0,Ω11) as

both n and T increase to ∞, where

Ω11 = (− lim
n→∞,T→∞

E[H−1
1

∂2Lxn(θ0;Xp, h)

∂θ∂θ′
H−1

1 ])−1

= (diag((
1

1− φ2
h0

,
(1− φh0)2

ω2
0

,
(1− φh0)2

3ω2
0

,
1

2ω2
0

,
1

2ι20
)))−1.

The Cox test statistics can be adapted here and we can use them to test between the

complete vs. incomplete information structures.

Tables 5 and 6 tabulate estimation results of the model under different vicinity cutoffs

with complete and incomplete information. Across all the specifications, we see that

population and median household income are both significantly related to the municipal

property tax rate. The more populated a municipality is, the higher its property tax will

be; and the wealthier the residents in a city, the lower the rate of property tax is. With

complete information, the intensity of interactions between adjacent local governments is
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significantly positive for all three cutoff values. With incomplete information, when the

municipal median household income is self-known, the estimated λ’s are also positive, but

significant only when the cutoff value is 30 or 50 kilometers and not for 100 kilometers.

A positive λ shows strategic complements, as the decisions of local governments reinforce

each other: when a neighboring jurisdiction increases the tax rate, a municipality will

levy a higher tax rate in its own territory; and when a neighbor decreases its tax rate, this

municipal government will reduce its own tax rate. Therefore, tax competition among

local governments is supported by the estimated results when the cutoff values between

two neighboring municipalities are not too large.

To understand more implications from magnitudes of estimates, we derive marginal

effects and counterfactuals by simulations. Consider changes in covariates or network

relations. (Xc, Xp) and Wn are the values before the change and (X̃c, X̃p) and W̃n are the

values after the change. Random ζsi for s = 1, 2, · · · , S are drawn from N(0, 1). In Model

m with estimates θ̂m and εsmi = σ̂mζ
s
i , generate ysmi with the values (Xc, Xp) and Wn and

ỹsmi with (X̃c, X̃p) and W̃n, for m = 0, 1, 2.16 We focus on the simulated average tax rate

before of a change (
∑n

i y
s
mi)/n and that after the change (

∑n
i=1 ỹ

s
mi)/n. For a marginal

effect of population, consider the case that all the municipal populations are increased

by 1%. That is, x̃ci = 1.01xci for all i, X̃p = Xp and W̃n = Wn. Then the simulated

marginal effect is computed as (1/S)
∑S

s=1[(
∑n

i=1 ỹ
s
mi/n)−(

∑n
i=1 y

s
mi/n)]/[(

∑n
i=1 y

s
mi/n)].

From Tables 5 and 6, a 1% increase in municipal populations will induce an increase in

tax rate on average across all vicinity cutoffs and information structures; however, the

magnitude is small (less than 0.06% in all specifications). The marginal effect of a 1%

increase in median household income can similarly be computed by simulations. They

are negative but larger in magnitudes compared with marginal effects of populations. For

all the cutoffs and information structures, the average simulated tax rate will decrease by

more than 0.4%. In addition, the magnitudes are larger in Model 1 relative to those in

Model 2. That may be because i’s tax rate is affected by j’s household income through

j’s tax rate in Model 1 but through i’s expectation on j’s tax rate in Model 2. To see
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the influence of local government interactions on tax rates, fix (X̃c, X̃p) = (Xc, Xp) and

let W̃n,ij = 0, i.e., no interactions. In Tables 5 and 6, we can compare the predicted

average tax rates τ p = (
∑n

i=1 y
s
mi)/n with the original Wn and τ c = (

∑n
i=1 ỹ

s
mi)/n with

W̃n. In both Model 1 and Model 2, τ c < τ p due to strategic complements. Additionally,

when the vicinity cutoff is either 30 or 50 kilometers, as their estimated interactions λ̂

in Model 2 are significant and larger in magnitude compared with those in Model 1, the

counterfacturals without related neighbors are smaller than those in Model 1.

As different information structures may lead to different implications, it is of practical

relevance to select between the two models. From the Monte Carlo study, the estimated

log likelihood and information criteria are valuable in model selection. Tables 5 and 6

present the estimated sample log likelihoods and the values for AIC and BIC criteria.

According the those criteria, the model without social interaction effects as estimated in

Estimation (1) is mostly dominated by estimations for the models with social interac-

tions.17 For Tobit models with social interactions, the complete information one prevails

the incomplete information one. The results for the formal Cox tests are presented in

Table 7, which show that the incomplete information model can be rejected but not the

complete information one with the empirical sample.

6 Conclusion

Motivated by empirical studies, we build a Tobit model with social interactions under

incomplete information and compare it with its counterpart in the complete information

case. A formal Cox-type test is proposed as a tool for model selection. As far as we know,

our study complements researches on information structure selection in game estimation.

As all the discussions are under the prerequisite that a sufficient condition for the ex-

istence of a unique equilibrium is satisfied, it will be an appealing extension to investigate

test of models in the presence of multiple equilibria. In his flexible information model,

Gireco (2014) solve the problem of multiplicity by assuming a nonparametric selection

rule and use the partial identification method for estimation and testing. For studies of

models with a possible large interaction intensity where multiplicity is possible, it would
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be interesting to develop techniques to deal with multiple equilibria in non-nested tests

between competing models.

Appendices

A Incomplete Information Models: Equilibrium Ex-

pectations, Identification and Calculation

A.1 Equilibrium and Identification

Following the general analysis in Yang and Lee (2016a), the existence of a unique BNE

can be established under the following assumptions.

Assumption A.1. The idiosyncratic shocks εi’s are i.i.d. with the pdf, fε(·), and the cor-

responding CDF, Fε(·). These idiosyncratic shocks are also independent of all exogenous

characteristics and network connections.

Assumption A.2. E|εi| <∞ for any i = 1, · · · , n.

Assumption A.3. λm‖Wn‖∞ < 1, where [−λm, λm] is a compact parameter space of λ

in <1; elements Wn,ij of Wn are all non-negative and ‖Wn‖∞ = max1≤i≤n
∑n

j=1Wn,ij.

As in Yang and Lee (2016a), conditional expectations on agents’ behaviors are im-

portant component for the model with incomplete information, Model 2. From (2.3), fix

Z = z, for any k 6= i, we have that

E[yi|Xp
Jk
, z] = E[H(β0 +Xc′β1 +Xp′

i β2 +Xg′β3 + λ
∑
j 6=i

Wn,ijE[yj|Xp
Ji
, Z])|Xp

Jk
, z],

where H(·) is a real-valued function such that for any x ∈ <1,

H(x) =

∫ +∞

−∞
I(c > −x)(x+ c)fε(c)dc = x(1− Fε(−x)) +

∫
c>−x

cfε(c)dc.

The features about censored outcomes give the function H(·) the above specific form,

which is a monotonic function with uniformly bounded derivatives

For identification, we aim at recovering the model primitives, β, λ, Fx and Fε, from

observations on X and Y , given Wn and Jn.

Definition A.1. Given social relations Wn = W n and a structure of private information,

J = J , (β, λ, Fx, Fε) is observationally equivalent to (β̃, λ̃, F̃x, F̃ε), if FY,X|Wn,J
(·, ·|β, λ, Fx, Fε) =

25



FY,X|Wn,J
(·, ·|β̃, λ̃, F̃x, F̃ε). The true model primitives (β∗, λ∗, F ∗x , F

∗
ε ) is identified if any

(β̃, λ̃, F̃x, F̃ε) 6= (β∗, λ∗, F ∗x , F
∗
ε ) cannot be observationally equivalent to (β∗, λ∗, F ∗x , F

∗
ε ).

Assumption A.4. The distribution of exogenous characteristics, Fx(·), can be inferred

from data about X.

Assumption A.5. εi’s are i.i.d. with the full support, <1, according to a parametric

pdf, fε(·;σ), where the functional form, fε(·; ·) is known but the parameter value of σ is

unknown. The corresponding CDF is Fε(·;σ), which is strictly increasing in its argument.

Assumption A.4 allows us to focus on β, λ, and Fε. Assumption A.5 parametrizes

the distribution of εi’s. It allows the distribution of the idiosyncratic shocks to belong to

some scale family, including the normal distribution.

First, due to the feature of the Tobit model, σ can be identified from the rela-

tionship between the mean outcome, E[yi|Xp, z], and the average amount of censoring,

E[I(yi = 0)|Xp, z], where Xp refers to the matrix of all privately known characteristics,

(Xp′

1 , · · · , Xp′
n )
′
.18

Lemma A.1. Given public information, Z = z, for all i = 1, · · · , n,

E[yi|Xp, z] =− F−1
ε (E[I(yi = 0)|Xp, z];σ)(1− E[I(yi = 0)|Xp, z])

+

∫
c>F−1

ε (E[I(yi=0)|Xp,z];σ)

cfε(c;σ)dc.
(A.1)

Assumption A.6. fε(c;σ) is differentiable with respect to σ; and limc→∞ c
∂Fε(c;σ)

dσ
= 0.

Assumption A.7. The ratio, ∂Fε(c;σ)
∂σ

/fε(c;σ), is strictly monotonic with respect to c.

As an example of Assumptions A.6 and A.7, consider the case that εi is normally

distributed with zero mean and standard deviation σ. Then, Fε(c;σ) = Φ(c/σ) and

fε(c;σ) = 1
σ
φ( c

σ
), where Φ(·) and φ(·) are respectively the CDF and pdf of the standard

normal random variable. limc→∞ c
∂Fε(c;σ)
∂σ

= limc→∞−( c
σ
)2φ( c

σ
) = 0 and ∂Fε(c;σ)

∂σ
/fε(c;σ) =

−( c
σ2φ( c

σ
))/( 1

σ
φ( c

σ
)) = − c

σ
, which is decreasing in c. Therefore, the sufficient conditions

in Assumptions A.6 and A.7 are satisfied.

Proposition A.1. For any Wn and information structure, J , if Assumptions A.4 to A.7

are satisfied, σ can be identified from the moments, E[y|Xp, z] and E[I(y = 0)|Xp, z].

The proof of Proposition A.1 depends on the relationship, (A.1), which is valid with
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any information structure on X. Actually, it is more transparent to see the identification

of the standard deviation in the normal disturbance case through (A.1). By calculation,

we can get that

E[y|Xp, z] = σ
(
φ(Φ−1(E[I(y = 0)|Xp, z]))−Φ−1(E[I(y = 0)|Xp, z])(1−E[I(y = 0)|Xp, z])

)
,

which implies that

σ = E[y|Xp, z]/
(
φ(Φ−1(E[I(y = 0)|Xp, z]))−Φ−1(E[I(y = 0)|Xp, z])(1−E[I(y = 0)|Xp, z])

)
.

In principle, with appropriate empirical observations, E[y|Xp, z] and E[I(y = 0)|Xp, z]

might be nonparametrically identified from empirical observations. If so, we can identify

σ for any information structure.

Next, we turn to identification of other parameters. Consider the case of a single

group. In that case, any group characteristics, Xg, is absorbed by the constant term.

Hence, we focus on the identification of β0, β1, β2 and λ.19 For that purpose, we impose

two additional assumptions.

Assumption A.8. Given social relations W n and an information structure, J , E[Yi|Xp
Jk
, Z]

can be identified (nonparametrically), for any i, k = 1, · · · , n.

Assumption A.9. max1≤i≤n

∣∣∣det(V ar((Xc
i , Xp

i ,
∑

j 6=iWi,jE[yj|Xp
Ji
, Z]

)
)
)∣∣∣ > 0.

Proposition A.2. With a given Wn and J , if Assumptions A.4 to A.9 hold, β0, β1, β2,

and λ can be identified.

A.2 Equilibrium Calculation

As it is shown in Yang and Lee (2016a), the function of equilibrium conditional expec-

tations, denoted by ψe, can be viewed as a fixed point of an operator in a function

space, denoted as T . If |λ|‖Wn‖∞ < 1, that operator will be a contraction mapping.

Owing to properties of a contraction mapping in a complete metric space (Ξ, ‖ · ‖),

liml→∞ T
l(ξ0) = ψe, for any ξ0 ∈ Ξ, according to the norm ‖ · ‖. Thus, beginning with

any initial guess, by iterating the operator T , we can approximate the equilibrium con-

ditional expectation function, ψe, to derive the corresponding BNE. However, in general,

since ψe is a function of random vectors, to solve it means to derive its realizations for

every point on the underlying sample space, which is by no way a trivial task.
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Nonetheless, ψe changes with elements in the sample space indirectly through the

random vector Xp and a predetermined information structure J . Therefore, if Xp
i ’s

are discrete random vectors with a finite support, it suffices to characterize ψe by its

values on those points, which makes it possible to represent ψe by a finite dimensional

vector. Although that representation is not applicable when Xp
i ’s vary continuously

on a continuum support, due to the use of quadrature for stochastic integrals as an

approximation of integrals generated by expectations, we can approximate every possible

realization of ψe by a finite dimensional vector. To elucidate the computation, we begin

with the simplest case and then move on to more complicated ones.

A.2.1 All Characteristics are Publicly Known

When all exogenous characteristics, Xg, Xc, Xp, are public information, there is no uncer-

tainty other than idiosyncratic shocks, which are i.i.d. and independent of all exogenous

characteristics. Given Z = z, ψe reduces to an n× 1 vector, satisfying

ψei = H(β0 +Xc′

i β1 +Xp′

i β2 +Xg′β3 + λ
∑
j 6=i

Wn,ijψ
e
j ), (A.2)

for all i = 1, · · · , n. Although we cannot get an analytical solution for the Tobit model,

due to the nonlinearity of the function H(·), we can solve ψe numerically by contraction

mapping iterations at each given vector of parameters.

A.2.2 Self-Known Characteristics

If Xp
i is realized only to i (and econometricians), we call the information structure as

“self-known characteristics”, in which case Ji(k) = 0 for all k 6= i. Then any two different

agents do not share private information. For i 6= k, we have that

ψei (X
p
k) = E[H(β0 +Xc′

i β1 +Xp′

i β2 +Xg′β3 + λ
∑
j 6=i

Wn,ijψ
e
j (X

p
i ))|Xp

k , z]. (A.3)

Inspecting (A.3), if all Xp
i ’s are independent of each other conditional on Z = z, the

realization of Xp
k does not provide new information on Xp

i given Z = z. That is to say,

ψei (X
p
k) = E[H(β0 +Xc′

i β1 +Xp′

i β2 +Xg′β3 + λ
∑
j 6=i

Wn,ijψ
e
j (X

p
i ))|z],

for any i 6= k. Since the right-hand side does not depend on the random vector Xp
k ,

we can view expectations on i’s behaviors as a constant. Therefore, with independent

self-known characteristics, the equilibrium conditional expectation is a constant vector,
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such that

ψei = E[H(β0 +Xc′

i β1 +Xp′

i β2 +Xg′β3 + λ
∑
j 6=i

Wn,ijψ
e
j )|z], (A.4)

Comparing (A.2) and (A.4), we see that in both cases every two agents k 6= k
′

have the

same expectation on the behavior of a third person, i. However, when all exogenous char-

acteristics are public information, k and k
′

just integrate over unobserved idiosyncratic

shocks in (A.2); but in contrast, when they know just their only realizations for Xp, they

have to integrate over Xp
i to predict i’s behaviors in (A.4), for Xp

i is not included in Z.

In general, (Xp
1 , · · · , Xp

n) might have a joint distribution such that Xp
i ’s are correlated.

With correlation, conditional expectations would depend on specific private information

used to make predictions. Scrutinizing (A.3), if two agents k and k
′

link to i, i.e.,

Wn,ki 6= 0 and Wn,k′ i 6= 0, their private information influences predictions on i’s behaviors

through the conditional distributions Fp(X
p
i |X

p
k , z) and Fp(X

p
i |X

p

k′
, z). In general, the

two conditional distributions might differ, and k and k
′

might form different conditional

expectations. However, there are circumstances that the two conditional distributions can

be the same. In that case, those two agents’ predictions on i’s behaviors will be identical

once they get the same realizations, i.e., Xp
k = x and Xp

k′
= x, where x is a realization. A

sufficient condition for such a circumstance is “exchangeability”, cited below from Yang

and Lee (2016a):

Assumption A.10. Conditional on public information, Z = z, Xp
i ’s have the same

support, Sp. Their conditional joint distribution, F p(Xp
1 , · · · , Xp

n|Z = z), is exchange-

able, i.e., for any permutation, s : {1, · · · , n} → {1, · · · , n}, F p(Xp
1 , · · · , Xp

n|Z = z) =

F p(Xp
s(1), · · · , X

p
s(n)|Z = z).

Under “exchangeability”, if Xp
k = Xp

k′
= x,

ψei (X
p
k = x) =E[H(β0 +Xc′

i β1 +Xp′

i β2 +Xg′β3 + λ
∑
j 6=i

Wn,ijψ
e
j (X

p
i ))|Xp

k = x, z]

=E[H(β0 +Xc′

i β1 +Xp′

i β2 +Xg′β3 + λ
∑
j 6=i

Wn,ijψ
e
j (X

p
i ))|Xp

k′
= x, z]

=ψei (X
p

k′
= x).

for any k, k
′

with Wn,ki 6= 0 and Wn,k′ i 6= 0. Therefore, we can directly define ψei on the
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common support of Xp
i ’s Sp, and characterize ψe by

ψei (x) = E[H(β0 +Xc′

i β1 + y
′
β2 +Xg′β3 + λ

∑
j 6=i

Wn,ijψ
e
j (y))|x, z],

for all i = q, · · · , n and x ∈ Sp. In the following discussion, we consider the computation

of conditional expectations for two classes of joint distributions that satisfy Assumption

A.10.

1. (Discrete Xp) Suppose that Xp
i can only take one of m values in

{
xl : 1 ≤ l ≤ m

}
,

where each xl is a vector with specific values. Given public information Z = z,

the conditional probability function, fp(y|x, z), is fully captured by an m × m

transition matrix, P = (Pll′ ), where pll′ = prob(Xp
i = xl

′
|Xp

k = xl, Z = z),

for any i and k such that k 6= i. We can represent ψe by an (nm) × 1 vector,

(ψe1(x1), · · · , ψe1(xm), · · · , ψen(x1), · · · , ψen(xm))
′
, and characterize it by the following

system of nonlinear equations:

ψei (x
l) =

m∑
l̃=1

pll̃H(β0 +Xc′

i β1 + xl̃
′
β2 +Xg′β3 + λ

∑
j 6=i

Wn,ijψ
e
j (x

l̃)), (A.5)

for i = 1, · · · , n and l, l̃ = 1, · · · ,m. Beginning with any initial (nm)×1 vector and

iterating the contraction mapping, we can derive ψe.

2. (Continuous Xp) Consider the case when Xp
1 , · · · , Xp

n are jointly normal with a

common mean µ, a common variance Σ1, and a common covariance Σ2 between

any Xp
i and Xp

j with i 6= j. Then for any i 6= j, conditional on Xp
j = X, Xp

i is

normal with mean µ + Σ2Σ−1
1 (X − µ) and variance Σ1 − Σ2Σ−1

1 Σ
′
2. In this case,

each Xp
i can take any value in <kp . Thus, it is impossible to represent ψe by a finite

dimensional vector. However, for any i and x ∈ <kp , ψei (x) is determined by an

integral, which can be approximated by values of the function on a fixed number of

values (quadrature points) using the quadrature method. For illustration, consider

the special case that each Xp
i is a single random variable, i.e., its dimension kp = 1.

In this case, denote Σ1 = η2 and Σ2 = ρη2. We first transform integration in <1

into integration over a finite interval, [−1, 1], and then apply the Gauss-Legendre
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quadrature.

ψei (x) =

∫ +∞

−∞
H(β0 +Xc′

i β1 + x̃β2 +Xg′β3 + λ
∑
j 6=i

Wn,ijψ
e
j (x̃))

· 1√
2π(1− ρ2)η2

exp(−(x̃− ρx− (1− ρ)µ)2

2(1− ρ2)η2
)dx̃

=

√
2

π(1− ρ2)η2

∫ 1

−1
H(β0 +Xc′

i β1 + log(
z̃ + 1

1− z̃
)β2 +Xg′β3 + λ

∑
j 6=i

Wn,ijψ
e
j (log(

z̃ + 1

1− z̃
)))

· exp(−
(log( z̃+1

1−z̃ )− ρx− (1− ρ)µ)2

2(1− ρ2)η2
)

1

(z̃ + 1)(1− z̃)
dz̃

≈

√
2

π(1− ρ2)η2

K∑
k=1

ωkH(β0 +Xc′
i β1 + log(

z̃k + 1

1− z̃k
)β2 +Xg′β3 + λ

∑
j 6=i

Wn,ijψ
e
j (log(

z̃k + 1

1− z̃k
)))

· exp(−
(log( z̃k+1

1−z̃k )− ρx− (1− ρ)µ)2

2(1− ρ2)η2
)

1

(z̃k + 1)(1− z̃k)
,

(A.6)

In Eq A.6, the second equality is derived by a change of integration variable, x̃ =

log((z̃+1)/(1−z̃)). At last, the approximation is based on standard Gauss-Legendre

quadrature, where z̃k’s are the abscissae, ωk’s are the corresponding weights, and

K is the number of abscissae. Define accordingly, xpk = log( z̃k+1
1−z̃k

), for k = 1, · · · , K,

we get nK equalities,

ψei (x
p

k′
) =

√
2

π(1− ρ2)η2

K∑
k=1

ωkH(β0 +Xc′

i β1 + xpkβ2 +Xg′β3 + λ
∑
j 6=i

Wn,ijψ
e
j (x

p
k))

· exp(−
(xpk − ρx

p

k′
− (1− ρ)µ)2

2(1− ρ2)η2
)

1

(z̃k + 1)(1− z̃k)
,

for all i = 1, · · · , n and k
′

= 1, · · · , K. This is very similar to (A.5). Hence,

we can solve ψei (x
p

k′
)’s by contraction mapping iterations. After that, for any x ∈

<1, we can approximate ψei (x) by (A.6). Owing to the fast convergence of the

Gauss-Legendre quadrature, we only need to take a small number of abscissae. In

our Monte Carlo experiments, we find that good performance can be achieved in

estimation by choosing K = 8.

When Xp
i ’s are of multiple dimensions, multiple-dimension quadrature methods

are available but can be computationally intensive. Alternatively, we can use the

stochastic integral approximation with importance sampling. Let h(ai) be a den-
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sity with its support containing the support of Xp
i so that fp(x

p|x)/h(xp) is well

defined. Then we can generate K random draws, xpk, from h(·). The stochastic

approximation will be

ψei (x) ≈ 1

K

K∑
k=1

H(β0 +Xc′

i β1 + xpkβ2 +Xg′β3 + λ
∑
j 6=i

Wn,ijψ
e
j (x

p
k))

fp(x
p
k|x)

h(xpk)
.

Analogous to previous discussions, we solve ψe(xpk)’s by contraction mapping and

then approximate the function ψei (x) at any point x.

For general information structures without an exchangeable joint distribution, the

unique equilibrium can be calculated in a similar way. When all Xp
i ’s are discrete random

vectors with a finite support, we can fully solve ψe directly via contraction mapping

iterations. When Xp
i ’s are continuous random variables, we choose a finite number of

points for each agent and approximate relevant integration in conditional expectations

by a weighted sum. For continuous Xp
i ’s with stochastic simulation, if the number of

simulated points for each agent is the same, say K, the total number of equations for

solution will be nK. Since values of ψe on those finite number of variables can be solved

as a vector by contraction mapping iteration, the values of ψe for all realizations can be

approximated.

A.3 Group Random Effects

In a sample with groups, there are some possible common factors which can influence

all group members but are unknown to econometricians. For example, when making

decisions on tax rates, municipal officers know the lobbying power of different parties.

Nonetheless, there might not be a measure about that from data sets. Such factors are

group unobservables. In this paper, we model group unobservables as random effects.

To be specific, consider G independent groups. For a group g, in addition to Xg, Xc,g,

and Xp,g, there can be another set of unobserved (for econometricians) group features

which can be lumped together into a variable, ωg. Assume that ωg is independent of

other variables and has a zero mean. The observed censored outcome satisfies

yi,g = max

{
β0 +Xc′

i,gβ1 +Xp′

i,gβ2 +Xg′β3 + ωg + λ
∑
j 6=i

Wng ,ijE[yj,g|Xp,g
Ji,g
, Z]− εi,g, 0

}
.

32



Because ωg is in public information for agents, its presence will be similar to Xg in the

analysis of equilibrium expectation and behaviors. For econometricians, ωg may be taken

as a random variable with zero mean and independent of all X’s in order to identify the

intercept and β3 in the presence of unobserved group variables in Xg. The distribution

of ωg can be identified through variation across different groups. However, when unob-

servable group random effects are taken into account, our estimation method will need

to be modified. Since ωg is unobservable to econometricians, one needs to integrate over

its density function fω(·) to construct the sample likelihood function. Denote the size of

group g by ng,

logL(Y |Xc, Xp, Xg,W ) =

G∑
g=1

log
[ ∫ ng∏

i=1

(
fε(yi,g − (β0 +Xc′

i,gβ1 +Xp′

i,gβ2 +Xg′β3 + ωg + λ
∑
j 6=i

Wng ,ijE[yj,g|Xp,g
Ji,g

, z]);σ)I(yi,g>0)

· Fε(β0 +Xc′
i,gβ1 +Xp′

i,gβ2 +Xg′β3 + ωg + λ
∑
j 6=i

Wng ,ijE[yj,g|Xp,g
Ji,g

, z];σ)I(yi,g)=0
)
fω(ωg)dωg

]
.

In estimation, we may use stochastic integration to approximate the integration over

the unobserved group random effects, ωg’s. That is, we obtain S independent draws, ωg,s,

for s = 1, · · · , S for each group g = 1, · · · , G from the density fω(·; γ), to construct a

simulated sample log likelihood function:

logL(Y |Xc, Xp, Xg,W ) =

G∑
g=1

log
[ 1

S

S∑
s=1

ng∏
i=1

(
fε(yi,g − (β0 +Xc′

i,gβ1 +Xp′

i,gβ2 +Xg′β3 + ωg,s + λ
∑
j 6=i

Wng ,ijE[yj,g|Xp,g
Ji,g

, z]);σ)I(yi,g>0)

· Fε(β0 +Xc′
i,gβ1 +Xp′

i,gβ2 +Xg′β3 + ωg,s + λ
∑
j 6=i

Wng ,ijE[yj,g|Xp,g
Ji,g

, z];σ)I(yi,g)=0
)]
.

In estimation, we will use the NFXP ML algorithm, replacing the true likelihood with

the above simulated one. Results of Monte Carlo experiments for this estimation method

can be found in the supplementary file.
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B Asymptotic Distributions of the Test Statistics

B.1 Model Assumptions

To investigate rigorously the asymptotic distribution of the Cox test statistics, we list

more concise regularity conditions for the models below.

Assumption B.1. Individual units in the economy are located in a region Dn ⊂ D ⊂ <d

where the cardinality |Dn| of Dn goes to infinity as n → ∞. The distance between two

individuals i 6= j, d(i, j), is larger than or equal to a specific positive constant, which may

be normalized to be 1, without loss of generality.

Assumption B.2. The weights Wn,ij are all non-negative. They satisfy either of the

following two conditions, or both. (1) Only individuals whose distances are no larger than

some specific constant, say d0 > 1, can affect each other. That is, Wn,ij = 0 if d(i, j) > d0

for i 6= j; (2) For every n, the number of columns of Wn with λ0

∑n
i=1wn,ij > λm‖Wn‖∞

is less than or equal to some fixed number, say N that is independent of n; and there exists

an α > d and a constant C0 such that |Wn,ij| < C0/d
α(i, j), where λ0 is the interaction

intensity in the true DGP for Model 1 or 2 and d is the dimension of agents’ location

space in Assumption B.1.

Assumption B.3. supk,i,nE|xik,n|2 <∞ and supi,nE|εi,n|2 <∞.

Assumption B.4. (1){xi,n}ni=1 is an α-mixing random fields with α-mixing coefficient

α(u, v, r) ≤ (u+v)τ α̂(r) for some τ ≥ 0 with
∑∞

r=1 r
d−1α̂(r) <∞; (2) supi,k,n ‖xki,n‖4+∆ <

∞ for some ∆ > 0.

Assumption B.5. The parameter space Θ is a compact subset in a finite dimensional

Euclidean space.

Assumption B.6. θ0 is interior in Θ and lim supn→∞[E logLn(θ) − E logLn(θ0)] < 0

for any θ 6= θ0, where Ln(·) is the likelihood function of the DGP, which can be Model 1

or Model 2, and θ0 is the true parameter vector of the DGP.

Assumption B.7. (1) supi,k,n ‖xik,n‖8+δ <∞ for some δ > 0; (2) For some 0 < δ
′
< 2+

δ
2
, the α-mixing coefficient of {xi,n}ni=1 in Assumption B.4 satisfies

∑∞
r=1 r

d(τ∗+1)−1α̂(r)
δ
′

4+2δ
′ <

∞ for τ∗ = δ
′
/(2 + δ

′
).
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Assumption B.8. Σ0 = limn→∞Σn exists and is nonsingular where Σn = 1
n
var(

∑n
i=1 qi,n(θ0))

with qi,n(θ0) being q1i(θ0) of Model 1 in Eq.(B.5) or q2i(θ0) of Model 2 in Eq.(B.6).

Assumption B.9. The α in Assumption B.2 (II) and δ in Assumption B.7 satisfy α >

dmax {7 + 24δ−1, 5 + 32δ−1 + 64δ−2}, where d is the dimension of the space where agents

are located as in Assumption B.1.

Under Assumptions A.1 to A.3 and B.1 to B.9 Xu and Lee (2015) show that the

ML estimator of Model 1 is consistent and asymptotically normal. The derivation of

the distributions of the Cox tests is based on analysis of the distributions of the ML

estimators under Model 1 and 2. In our model with a simple network with exchangeable

regressors such as xpi = h+ εpi , h can be treated as a constant for analysis so the mixing

condition in Assumption B.4 can be satisfied as long as εpi ’s are mixing across i.

B.2 Pseudo True Values

The first step estimate θ̂x has no effects on the second step estimation of δ1 in Model 1

because ln f1(Yn|Xn, δ1) does not depend on θ̂x. Under the hypothesis H0 that Model 1

is the true model, the consistency and asymptotic normality of the MLE δ̂1n is derived

in Xu and Lee (2015). It has
√
n(δ̂1n− δ10)

d→ N(0,Σ−1
10 ), where Σ10 is a positive definite

matrix. For δ̂2n of Model 2, which is a misspecified model in this case, we have the

following property.

Proposition B.1. Suppose that the true DGP is Model 1 with θ10 generating the data

and Assumptions A.1 to A.9 and B.1 to B.9 are satisfied, then δ̂2n− δ2n(θ10) = op(1) and

√
n(δ̂2n − δ2n(θ10))

d→ N(0,Ω21), where Ω21 is a positive definite matrix.

Next we consider H0 : Model 2 with true parameter θ20. We have the following

proposition:

Proposition B.2. Suppose that the true DGP is Model 2 with θ20 generating the data and

Assumptions A.1 to A.9 and B.1 to B.9 are satisfied, then
√
n(δ̂1n − δ1n(θ20))

d→ (0,Ω12)

for some variance matrix Ω12 and
√
n(δ̂2n − δ20)

d→ N(0,Ω22), where Ω22 is a positive

definite matrix.
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B.3 Distributions of the Test Statistics

Under H0 : true model l with parameter θl0,

1√
n

(
Lmn(δmn(θl0), θx0 : θl0)− Lmn(δ̂mn, θ̂xn : θ̂ln)

)
=

1√
n

[Lmn(δmn(θl0), θx0 : θl0)− Lmn(δ̂mn, θx0 : θl0) + Lmn(δ̂mn, θx0 : θl0)− Lmn(δ̂mn, θ̂xn : θl0)

+ Lmn(δ̂mn, θ̂xn : θl0)− Lmn(δ̂mn, θ̂xn : θ̂ln)]

=− [δ̂mn − δmn(θl0)]′
∂2Lmn(

˜̃
δmn, θx0 : θl0)

2n∂δm∂δ′m

√
n[δ̂mn − δmn(θl0)]′

− ∂Lmn(δ̂mn, θ̃xn : θl0)

n∂θ′x

√
n(θ̂xn − θx0)− ∂Lmn(δ̂mn, θ̂xn : θ̃ln)

n∂θ′l

√
n(θ̂ln − θl0)

=− ∂Lmn(δmn(θl0), θx0 : θl0)

n∂θ′x

√
n(θ̂xn − θx0)− Cmn,l(δmn(θl0), θx0 : θl0)

√
n(θ̂ln − θl0) + op(1),

(B.1)

where
˜̃
δmn is a value between δ̂mn and δmn(θl0), θ̃xn is a value between θ̂xn and θx0, θ̃ln

is a value between θ̂ln and θl0, Cmn,l(δm, θx : θl) = 1
n
∂Lmn(δm,θx:θl)

∂θ′l
is the derivative only

with respect to the argument θl of Lmn(δm, θx : θl), where θl is from the conditional pdf

of fl(Yn|Xn, θl), and ∂Lmn(θm,θx:θl)
∂θ′x

is the derivative with respect to θx in Lmn(δm, θx : θl),

where θx is from Lmn(δm, θxm).

Similarly,

1√
n

[Lmn(δ̂mn, θ̂xn)− Lmn(δmn(θl0), θx0)]

=
1√
n

[Lmn(δ̂mn, θ̂xn)− Lmn(δmn(θl0), θ̂x0)] +
1√
n

[Lmn(δmn(θl0), θ̂x0)− Lmn(δmn(θl0), θx0)]

=
∂Lmn(δmn(θl0), θ̂xn)

n∂θ′x

√
n(θ̂xn − θx0)− [δ̂mn − δmn(θl0)]′

∂2Lmn(
˜̃
δmn, θx0)

2n∂δm∂δ′m

√
n[δ̂mn − δmn(θl0)]

=
∂Lmn(δm, θx0)

n∂θ′x
|δm=δmn(θl0)

√
n(θ̂xn − θx0) + op(1). (B.2)

The preceding Eqs.(B.1) and (B.2) are two components of the asymptotic distribution

of the Cox test statistic. For the asymptotic distributions of the test statistics under the
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true model l, we consider

1√
n

(
Lmn(δ̂mn, θ̂xn)− Lmn(δ̂mn, θ̂xn : θ̂ln)

)
=

1√
n

[Lmn(δ̂mn, θ̂xn)− Lmn(δmn(θl0), θx0) + Lmn(δmn(θl0), θx0)− Lmn(δmn(θl0), θx0 : θl0)

+Lmn(δmn(θl0), θx0 : θl0)− Lmn(δ̂mn, θ̂xn : θ̂ln)]

=

(
∂Lmn(δm, θx0)

n∂θ′x
|δm=δmn(θl0) −

∂Lmn(δmn(θl0), θx0 : θl0)

n∂θ′x

)√
n(θ̂xn − θx0) + op(1)

+
1√
n

[Lmn(δmn(θl0), θx0)− Lmn(δmn(θl0), θx0 : θl0)]− Cmn,l(θmn(θl0), θx0 : θl0)
√
n(θ̂ln − θl0)

=
1√
n

[Lmn(δmn(θl0), θx0)− Lmn(δmn(θl0), θx0 : θl0)]− Cmn,l(θmn(θl0), θx0 : θl0)
√
n(θ̂ln − θl0) + op(1),

where the last “=” holds because

1

n

(
∂Lmn(δm, θx0)

n∂θ′x
|δm=δmn(θl0) −

∂Lmn(δmn(θl0), θx0 : θl0)

n∂θ′x

)
= op(1)

for both m = 1 and 2, as ∂L1n(δ1,θx)
∂θ′x

= 0 and ∂L2n(δ2,θx)
∂θ′x

is the sum of n terms with each

term satisfying the spatial NED, hence the LLNs can be applied.

Therefore, under the null of Model 1,

Cox1(Yn, Xn) =
1√
n

(
L2n(δ̂2n, θ̂xn)− L1n(δ̂1n)− [L2n(δ̂2n, θ̂xn : θ̂1n)− L1n(δ̂1n : θ̂1n)]

)
=

1√
n

[L2n(δ2n(θ10), θx0)− L2n(δ2n(θ10), θx0 : θ10)]− 1√
n

[L1n(δ10)− L1n(δ10 : θ10)] (B.3)

+[C1n,1(δ10, θx0 : θ10)− C2n,1(δ2n(θ10), θx0 : θ10)]
√
n(θ̂1n − θ10) + op(1)

and under the null of Model 2,

Cox2(Yn, Xn) =
1√
n

(
L1n(δ̂1n)− L2n(δ̂2n, θ̂xn)− [L1n(δ̂1n : θ̂2n)− L2n(δ̂2n, θ̂xn : θ̂2n)]

)
=

1√
n

[L1n(δ1n(θ20))− L1n(δ1n(θ20) : θ20)]− 1√
n

[L2n(δ20, θx0)− L2n(δ20, θx0 : θ20)] (B.4)

+[C2n,2(δ20, θx0 : θ20)− C1n,2(δ1n(θ20), θx0 : θ20)]
√
n(θ̂2n − θ20) + op(1).

Detailed expressions for terms on the right hand side of these Cox test statistics

are from the specific likelihood functions of the two models.20 Let kx and kβ denote,

respectively, the dimension of θx and βm. Then the dimension of δm = (β
′
m, λ, σ)

′
is

kβ + 2. From Eq.(B.3), Cox1 can be rewritten as

Cox1 =
1√
n

n∑
i=1

[q1i(θ10)− Eθ10(q1i(θ10))] + op(1), (B.5)
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with

q1i(θ10) = I(yi = 0) ln
Φ[−γ2i(θ2n(θ10)|Xn)]

Φ[−γ1i(δ10|Yn, Xn)]

−1

2
I(yi > 0)

(
ln
σ2

2n(σ10)

σ2
10

+ (
yi

σ2n(θ10)
− γ2i(θ2n(θ10)|Xn))2 − ε2

1i

σ2
10

]

)
+D11wi.Yn

[
I(yi > 0)

ε1i

σ2
10

− I(yi = 0)
φ[−γ1i(δ10|Yn, Xn)]

σ10Φ[−γ1i(δ10|Yn, Xn)]

]
+D13

(
1

σ3
10

I(yi > 0)(ε2
1i − σ2

10) + I(yi = 0)
(λ10wi.Yn + x′iβ10)φ[−γ1i(δ10|Yn, Xn)]

σ2
10Φ[−γ1i(δ10|Yn, Xn)]

)
+D12xi

[
I(yi > 0)

ε1i

σ2
10

− I(yi = 0)
φ[−γ1i(δ10|Yn, Xn)]

σ10Φ[−γ1i(δ10|Yn, Xn)]

]
−D11[G(Yn)WnG(Yn)(In − λ10G(Yn)WnG(Yn))−1]ii +

∞∑
l=1

λl10

l!
[(G(Yn)WnG(Yn))l]ii,

where the last term is from the Taylor expansion that ln |In − λ10An| = −
∑n

i=1

∑∞
l=1

λl10
l!

(Aln)ii,

and the row vector (D11, D12, D13) = limn→∞(C1n,1 − C2n,1)
( Σ−1

1n,1

0kx×kβ

)
, with D12 being a

1 × kβ dimensional row vector and D11 and D13 being scalars. Hence, with functions of

exogenous variables factored out, q1i(θ10) involves terms of endogenous variables

I(yi = 0), I(yi = 0) ln Φ(−γ1i(δ10|Yn, Xn)), I(yi = 0)
φ[−γ1i(δ10|Yn, Xn)]

Φ[−γ1i(δ10|Yn, Xn)]
,

I(yi = 0)
φ[−γ1i(δ10|Yn, Xn)]

Φ[−γ1i(δ10|Yn, Xn)]
wi.Yn, I(yi > 0)y2

i , I(yi > 0)yi, I(yi > 0)(wi.Yn)2,

I(yi > 0)wi.Yn, [G(Yn)WnG(Yn)(In − λ10G(Yn)WnG(Yn))−1]ii,

I(yi > 0)yiwi.Yn,
∞∑
l=1

λl10

l!
[(G(Yn)WnG(Yn))l]ii.

The NED property of these terms has been established in Xu and Lee (2015).

The Cox test statistics involve the scores evaluated at the true parameter value.

Suppose we can express the fist step estimator θ̂xn as
√
n(θ̂xn − θx0) = [

∑n
i=1(qxi(θx0) −

Eθx0 [qxi(θx0)])]/sqrtn, where qxi(θx0) satisfies the NED property. Since γ2i(θ2) and ∂γ2i(θ2)
∂θ2

are non-stochastic, we can rewrite

Cox2 =
1√
n

n∑
i=1

[q2i(θ20)− Eθ20(q2i(θ20))] + op(1), (B.6)
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with

q2i(θ20)

=I(yi,n = 0) ln
Φ[−γ1i(δ1n(θ20)|Yn, Xn)]

Φ[−γ2i,n(θ20|Xn)]
−
∞∑
l=1

λ
l

1n(θ20)

l!
[(G(Yn)WnG(Yn))l]ii

− 1

2
I(yi > 0)

(
ln
σ2

1n(θ20)

σ2
20

+ [
yi

σ1n(θ20)
− γ1i(δ1n(θ20)|Yn, Xn)]2 − ε2

2i

σ2
20

)
+D21

∂γ2i(θ20|Xn)

∂λ2

(
I(yi,n > 0)

ε2i

σ20

− I(yi = 0)
φ[−γ2i(θ20|Xn)]

Φ[−γ2i(θ20|Xn)]

)
+D23

(
I(yi,n > 0)[

ε2i

σ20

(
yi
σ2

20

+
∂γ2i(θ20|Xn)

∂σ2

)− 1

σ20

]− I(yi = 0)
φ[−γ2i(θ20|Xn)]

Φ[−γ2i(θ20|Xn)]

∂γ2i(θ20|Xn)

∂σ2

)
+D22

∂γ2i(θ20|Xn)

∂β2

(
I(yi > 0)

ε2i

σ20

− I(yi = 0)
φ[−γ2i(θ20|Xn)]

Φ[−γ2i(θ20|Xn)]

)
+ lim

n→∞
(C2n,2 − C1n,2)

(
Σ−1

2n,2R21qxi(θx0)

qxi(θx0)

)
,

where the row vector (D21, D22, D23) = limn→∞(C2n,2 − C1n,2)
( Σ−1

2n,2

0kx×kβ

)
with D22 being a

1× kβ dimensional row vector and D21 and D23 being scalars, and Σ2n,2 = −∂2L2n(δ20,θx0)
n∂δ2∂δ′2

.

The terms involved endogenous variables in q2i(θ20) are

I(yi = 0), I(yi = 0) ln Φ(−γ1i(δ1n(θ20)|Yn, Xn)), I(yi > 0)y2
i , I(yi > 0)yi,

I(yi > 0)(wi.Yn)2, I(yi > 0)wi.Yn, I(yi > 0)yiwi.Yn,
∞∑
l=1

λ
l

1n(θ20)

l!
(W̃ l

n)ii, ε
x
i

Here, conditional on Xn, yi is independent and supi,n ||yi||p < ∞, so we can consider

{yi} as a special case of NED processes. Thus similar to those considered in Xu and Lee

(2015), all terms involved in q2i have the spatial NED property that ensures the CLT

holds as those in q1i. Hence, the Cox statistics are asymptotically normally distributed.

C Cox Tests: Bootstrapping

C.1 Verification of the Mean Approximation

First, we show the consistency of 1√
n
Lmn(θm : θln) by the simulated 1√

n
1
S

∑S
sb=1 L

(sb)
mn (θm|Y (sb)

ln , Xn)

with a large number S of random draws, where Y
(sb)
ln is generated from θln and Xn. Let

S = h(n), where h(·) is an increasing function of the sample size. From Chebyshev’s
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inequality,

P

(∣∣∣∣∣ 1

S
√
n

S∑
sb=1

L(sb)
mn (θm|Y (sb)

ln , Xn)− Eθln [
1

S
√
n

S∑
sb=1

L(sb)
mn (θm|Y (sb)

ln , Xn)]

∣∣∣∣∣ ≥ ε

)

≤ 1

ε2
Vθln

(
1

S
√
n

S∑
sb=1

L(sb)
mn (θm|Y (sb)

ln , Xn)

)
.

As Vθln

(
1

S
√
n

∑S
sb=1 L

(sb)
mn (θm|Y (sb)

ln , Xn))
)

= 1
S2

∑S
sb=1 Vθln

(
1√
n
L

(sb)
mn (θm|Y (sb)

ln , Xn))
)

= O( 1
S

),

and Eθln [L
(sb)
mn (θm|Y (sb)

ln , Xn)] = Lmn(θm : θln), we have

1

S
√
n

S∑
sb=1

L(sb)
mn (θm|Y (sb)

ln , Xn)− 1√
n
Lmn(θm : θln) = Op(

1√
S

). (C.1)

C.2 Validity of Bootstrapping

Under Model 2 with true DGP of θ20, Cox2(θ̂n|Yn, Xn) converges in distribution to a

N
(
0, limn→∞

1
n
Vθ20(

∑n
i=1 q2i(θ20|Yn, Xn))

)
. Hence, the standardized Cox test is Cox∗2(θ̂n|Yn, Xn) =

Cox2(θ̂n|Yn, Xn)/
√

1
n
Vθ20(

∑n
i=1 q2i(θ20|Yn, Xn)), which converges in distribution to aN(0, 1).

Under Model 2 with true DGP of θ̂2n, the bootstrap version has

Cox2(θ̂(b)
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(b)
2n , Xn)

=
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(b)
1n |Y
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(
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n
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2n , Xn))

)
.

We claim that 1
n
Vθ20(

∑n
i=1 q2i(θ20|Yn, Xn)) − 1

n
Vθ̂2n(

∑n
i=1 q2i(θ̂2n|Y (b)

2n , Xn)) = op(1), be-

cause 1
n
Vθ20(
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i=1 q2i(θ20|Yn, Xn)) − 1

n
Vθ̂2n(

∑n
i=1 q2i(θ20|Y (b)

2n , Xn)) = op(1), due to the

equicontinuity of Vθ2(
1√
n

∑n
i=1 q2i(θ20|Yn, Xn)) on θ2 and

1

n
Vθ̂2n(
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2n , Xn))− 1

n
Vθ̂2n(

n∑
i=1

q2i(θ̂2n|Y (b)
2n , Xn)) = op(1)

owing to the stochastic equicontinuity of q2i(θ2|Yn, Xn) on θ2.21

40



Hence,

Cox∗2(θ̂(b)
n |Y

(b)
2n , Xn) =

Cox2(θ̂
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n |Y (b)

2n , Xn)√
1
n
Vθ20(

∑n
i=1 q2i(θ20|Yn, Xn))

=
Cox2(θ̂

(b)
n |Y (b)

2n , Xn)√
1
n
Vθ̂2n(

∑n
i=1 q2i(θ̂2n|Y (b)

2n , Xn))
·

√
1
n
Vθ̂2n(

∑n
i=1 q2i(θ̂2n|Y (b)

2n , Xn))√
1
n
Vθ20(

∑n
i=1 q2i(θ20|Yn, Xn))

.

converges in distribution to a standard normal random variable. Namely, both the asymp-

totic distributions of Cox∗2(θ̂
(b)
n |Y (b)

2n , Xn) and Cox∗2(θ̂n|Yn, Xn) are asymptotically standard

normal. For any constant c, (1/B)
∑B

b=1 I(Cox∗2(θ̂
(b)
n |Y (b)

2n , Xn) > c)−P (Cox∗2(θ̂
(b)
n |Y (b)

2n , Xn) >

c) goes to 0 in probability, so we can find theoretical quantiles from the sample quantiles of

Cox∗2(θ̂
(b)
n |Y (b)

2n , Xn). Therefore, as p∗ = (1/B)
∑B

b=1 I(Cox2(θ̂
(b)
n |Y (b)

2n , Xn) > Cox2(θ̂n|Yn, Xn))

is equal to (1/B)
∑B

b=1 I(Cox∗2(θ̂
(b)
n |Y (b)

2n , Xn) > Cox∗2(θ̂n|Yn, Xn)), we reject the null if p∗

is smaller than a given level of significance α.
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Table 1: Tobit Models with Small Interaction Intensity

Complete Information
Complete Information Incomplete Information

Model Specification n = 20, G = 10 n = 20, G = 40 n = 20, G = 10 n = 20, G = 40

β0 0 0.0184 (0.1843) 0.0087 (0.0810) 0.1574 (0.8175) 0.0642 (0.4074)

β1 1 0.9952 (0.0817) 1.0002 (0.0403) 0.9909 (0.0847) 1.0035 (0.0414)

β2 1 1.0011 (0.0541) 1.0007 (0.0273) 1.0551 (0.1421) 1.0514 (0.0754)

λ 0.3 0.2880 (0.0831) 0.2953 (0.0342) 0.1863 (0.4680) 0.2347 (0.2277)

σ 1 0.9848 (0.0581) 0.9949 (0.0305) 1.0341 (0.0690) 1.0549 (0.0354)

m logL -224.9726 (18.8686) -907.6152 (40.8076) -232.3204 (19.9512) -942.3631 (43.5445)

rtrue 0.9640 1.0000 - -

rcensor 0.2755 0.2749 0.2755 0.2749

Incomplete Information
Incomplete Information complete Information

Model Specification n = 20, G = 10 n = 20, G = 40 n = 20, G = 10 n = 20, G = 40

β0 0 0.1630 (0.6366) 0.0532 (0.2373) 0.5081 (0.2109) 0.4993 (0.0899)

β1 1 0.9906 (0.0809) 1.0000 (0.0404) 0.9950 (0.0812) 1.0029 (0.0403)

β2 1 1.0397 (0.1045) 1.0122 (0.0472) 1.0081 (0.0542) 1.0872 (0.0274)

λ 0.3 0.2025 (0.3579) 0.2693 (0.1320) 0.0081 (0.0972) 0.0134 (0.0406)

σ 1 0.9845 (0.0572) 0.9954 (0.0305) 0.9863 (0.0574) 0.9976 (0.0306)

m logL -226.5578 (17.0586) -913.4246 (36.9513) -226.8745 (17.0564) -914.9692 (36.9957)

rtrue 0.5900 0.8460 - -

rcensor 0.2682 0.2685 0.2682 0.2685

Distribution of Self-Known Characteristics
True parameters n = 20, G = 10 n = 20, G = 40

µ 1 0.9872 (0.4032) 0.9899 (0.2148)
η 2 1.9336 (0.1919) 1.9804 (0.1005)
ρ 0.4 0.3463 (0.1184) 0.3851 (0.0591)

Note: G is the number of groups. n is the population for each group. The number of repetitions is 500. m logL is the
estimated sample average log likelihood. rtrue is the proportion of simulations for which estimated log likelihood is bigger
than that under wrong information structure. rcensor is the censoring rate. The numbers in parentheses are empirical
standard deviation.
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Table 2: Tobit Models with Intermediate Interaction Intensity

Complete Information
Complete Information Incomplete Information

Model Specification n = 20, G = 10 n = 20, G = 40 n = 20, G = 10 n = 20, G = 40

β0 0 0.0124 (0.1593) 0.0059 (0.0678) 0.2432 (1.5755) -0.0474 (0.9561)

β1 1 0.9965 (0.0794) 1.0005 (0.0382) 1.0053 (0.1101) 1.0288 (0.0553)

β2 1 1.0022 (0.0515) 1.0011 (0.0259) 1.2539 (0.2801) 1.2629 (0.1595)

λ 0.6 0.5935 (0.0449) 0.5975 (0.0183) 0.4160 (0.5579) 0.5004 (0.3290)

σ 1 0.9858 (0.0545) 0.9961 (0.0283) 1.4919 (0.2052) 1.5925 (0.1083)

m logL -242.4600 (19.2647) -978.8440 (41.7971) -308.8009 (30.6033) -1282.4000 (64.9694)

rtrue 1.0000 1.0000 - -

rcensor 0.1990 0.1981 0.1990 0.1981

Incomplete Information
Incomplete Information Complete Information

Model Specification n = 20, G = 10 n = 20, G = 40 n = 20, G = 10 n = 20, G = 40

β0 0 0.0829 (0.4733) 0.0201 (0.1560) 1.4866 (0.2759) 1.4777 (0.1203)

β1 1 0.9957 (0.0784) 1.0014 (0.0382) 1.0122 (0.0795) 1.0244 (0.0387)

β2 1 1.0497 (0.0882) 1.0127 (0.0389) 1.2209 (0.0540) 1.2146 (0.0263)

λ 0.6 0.5625 (0.1622) 0.5908 (0.0498) 0.0589 (0.0859) 0.0632 (0.0379)

σ 1 0.9855 (0.0529) 0.9968 (0.0287) 1.0079 (0.0540) 1.0238 (0.0297)

m logL -250.1296 (14.3362) -1008.5000 (31.2863) -254.2479 (14.5850) -1028.0000 (31.6930)

rtrue 0.9280 1.0000 - -

rcensor 0.1579 0.1593

Distribution of Self-Known Characteristics
True parameters n = 20, G = 10 n = 20, G = 40

µ 1 0.9872 (0.4032) 0.9899 (0.2148)
η 2 1.9336 (0.1919) 1.9804 (0.1005)
ρ 0.4 0.3463 (0.1184) 0.3851 (0.0591)

Note: G is the number of groups. n is the population for each group. The number of repetitions is 500. m logL is the
estimated sample average log likelihood. rtrue is the proportion of simulations for which estimated log likelihood is bigger
than that under wrong information structure. rcensor is the censoring rate. The numbers in parentheses are empirical
standard deviation.
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Table 3: Rejection Rates of Cox Tests for Information structures

λ = 0.3
DGP: Complete Information

H0: Complete Information H0: Incomplete Information
H1: Incomplete Information H1: Complete Information

Model Specification n = 20, G = 10 n = 20, G = 40 n = 20, G = 10 n = 20, G = 40
Size Power

Significance 0.01 0.0120 0.0080 0.6860 1.0000

0.05 0.0440 0.0440 0.8820 1.0000

0.1 0.0940 0.0880 0.9320 1.0000

DGP: Incomplete Information
H0: Incomplete Information H0: Complete Information
H1: Complete Information H1: Incomplete Information

Model Specification n = 20, G = 10 n = 20, G = 40 n = 20, G = 10 n = 20, G = 40
Size Power

Significance 0.01 0.0080 0.0080 0.0240 0.1520

0.05 0.0520 0.0320 0.1320 0.3900

0.1 0.1080 0.0940 0.2280 0.5340

λ = 0.6
DGP: Complete Information

H0: Complete Information H0: Incomplete Information
H1: Incomplete Information H1: Complete Information

Model Specification n = 20, G = 10 n = 20, G = 40 n = 20, G = 10 n = 20, G = 40
Size Power

Significance 0.01 0.0060 0.0100 0.7740 0.9980

0.05 0.0320 0.0460 0.7820 0.9980

0.1 0.0760 0.0980 0.7820 0.9980

DGP: Incomplete Information
H0: Incomplete Information H0: Complete Information
H1: Complete Information H1: Incomplete Information

Model Specification n = 20, G = 10 n = 20, G = 40 n = 20, G = 10 n = 20, G = 40
Size Power

Significance 0.01 0.0100 0.0060 0.5340 0.9960

0.05 0.0600 0.0520 0.7540 1.0000

0.1 0.1240 0.0960 0.8380 1.0000

Note: G is the number of groups. n is the population for each group.
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Table 4: Sample Statistics

Variables Mean Standard Deviation Min Max

Property Tax Rate Per $100 Valuation 0.3676 (0.1972) 0 0.8200

Population ×103 10.2842 (45.0819) 0.0250 751.9990

Median Household Income $ ×104 4.2092 (1.8504) 1.1750 15.7297

Distance Kilometers 216.7976 (125.4035) 1.2133 767.1423

No. of Observations 506
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Table 5: Tobit Model for Property Tax Competition with Complete Information

Estimation for City Property Tax Rates
Estimation (1) (2) (3) (4)

Constant 0.5384*** 0.3535*** 0.3398*** 0.2363***
(0.0204) (0.0323) (0.0401) (0.0499)

Population 0.0006*** 0.0006*** 0.0005*** 0.0005***
(0.0002) (0.0002) (0.0002) (0.0002)

Household Income -0.0430*** -0.0371*** -0.0385*** -0.0396***
(0.0041) (0.0044) (0.0045) (0.0044)

λ 0.4428*** 0.4921*** 0.7701***
(0.0613) (0.0858) (0.1164)

σ 0.1899*** 0.1783*** 0.1825*** 0.1816***
(0.0068) (0.0064) (0.0066) (0.0067)

log Likelihood 76.8650 100.5834 92.5753 95.5271

AIC -145.7301 -191.1667 -175.1506 -181.0541

BIC -128.8239 -170.0340 -154.0179 -159.9214

Predictions
τp 0.3672 0.3695 0.3670 0.3503

τ c - 0.2182 0.2025 0.1218

%Tax Change per 1% 0.0151 0.0282 0.0281 0.0593
Population Increase
%Tax Change per 1% -0.4602 -0.6918 -0.7847 -1.6539
Income Increase
No. of Observations 506 506 506 506

No. of “Neighbors” 10.8656 28.3636 94.0474
(4.3634) (9.0854) (28.1823)

Cutoff Distance 30 50 100

Note: Estimation (1) is the ordinary Tobit regression without social interactions. Estimations (2), (3), and (4) correspond
to the Tobit model under the framework of complete information. Two municipalities are viewed as close “neighbors” if the
distance between them is less than 30 kilometers for Estimations (2), or less than 50 kilometers for Estimations (3), and
for less than 100 kilometers for Estimations (4). Numbers in parentheses are theoretical standard deviations. Estimates
that are significant at the %10, %5, and %1 levels are marked by “*”, “**”, and “***”, respectively. τp is the average
predicted tax rate. τc is the counterfactual average tax rate when there are no network relations.
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Table 6: Tobit Model for Property Tax Competition with Incomplete Information

Estimation for City Property Tax Rates
Estimation (1) (5) (6) (7)

Constant 0.5384*** 0.2838*** 0.2549*** 0.2878
(0.0204) (0.0813) (0.0846) (0.1900)

Population 0.0006*** 0.0006*** 0.0006*** 0.0006***
(0.0002) (0.0001) (0.0001) (0.0001)

Household Income -0.0430*** -0.0453*** -0.0435*** -0.0422***
(0.0041) (0.0046) (0.0046) (0.0047)

λ 0.9242*** 0.9999*** 0.8694
(0.2904) (0.2957) (0.6575)

σ 0.1899*** 0.1890*** 0.1890*** 0.1898***
(0.0068) (0.0508) (0.0510) (0.0513)

log Likelihood 76.8650 79.0218 79.0007 77.4249

AIC -145.7301 -148.0435 -148.0013 -144.8498

BIC -128.8239 -126.9109 -128.8686 -123.7172

log Likelihood
τp 0.3672 0.3668 0.3670 0.3671

τ c - 0.1420 0.1275 0.1535

% Tax Change per 1% 0.0151 0.0458 0.0587 0.0416
Population Increase

% Tax Change per 1% -0.4602 -0.4950 -0.4768 -0.4618
Income Increase

No. of Observations 506 506 506 506

No. of “Neighbors” 10.8656 28.3636 94.0474
(4.3634) (9.0854) (28.1823

Cutoff Distance 30 50 100

Distribution of Municipal and State Median Household Income
Parameters φh a∗h b∗h ω2∗ ι2∗

Estimates 0.6453** 2.2858*** 0.0794*** 0.0213*** 3.4202***
(0.2628) (0.3019) (0.0140) (0.0066) (0.1100)

Estimated Moments E[Xp
i ] V ar(Xp

i ) Corr(Xp
i , X

p
j )

4.5086 3.4568 0.0106

Note: Estimation (1) is the ordinary Tobit regression without social interactions. Estimations (5), (6), and (7) correspond
to the Tobit model under incomplete information where the municipal median household income is assumed to be self-
known when decisions about the new tax rates are made. Two municipalities are viewed as close “neighbors” if the distance
between them is less than 30 kilometers for Estimations (5), or less than 50 kilometers for Estimations (6), and for less than
100 kilometers for Estimations (7). Estimates of the (transformed) parameters of the distribution of municipal median
household income are present in the lower panel. Numbers in parentheses are theoretical standard deviations. Estimates
that are significant at the %10, %5, and %1 levels are marked by “*”, “**”, and “***”, respectively. τp is the average
predicted tax rate. τc is the counterfactual average tax rate when there are no network relations.51



Table 7: Testing Information Structures: Property Tax Competition

Cutoff: 30 kilometers
H0: Complete Information H0: Incomplete Information

H1: Incomplete Information H1: Complete Information
Significance Sample Bootstrapping Rejection Sample Bootstrapping Rejection

Statistics Cutoff Statistics Cutoff

1% 0.0513 0.4206 0 1.7579 1.1376 1

5% 0.0513 0.2726 0 1.7579 0.2620 1

10% 0.0513 0.2009 0 1.7579 0.1982 1

Cutoff: 50 kilometers
H0: Complete Information H0: Incomplete Information

H1: Incomplete Information H1: Complete Information
Significance Sample Bootstrapping Rejection Sample Bootstrapping Rejection

Statistics Cutoff Statistics Cutoff

1% 0.0195 0.5661 0 0.9886 0.9021 1

5% 0.0195 0.2350 0 0.9886 0.4465 1

10% 0.0195 0.1984 0 0.9886 0.3260 1

Cutoff: 100 kilometers
H0: Complete Information H0: Incomplete Information

H1: Incomplete Information H1: Complete Information
Significance Sample Bootstrapping Rejection Sample Bootstrapping Rejection

Statistics Cutoff Statistics Cutoff

1% 0.1859 0.9104 0 1.1086 0.4147 1

5% 0.1859 0.4703 0 1.1086 0.1574 1

10% 0.1859 0.3044 0 1.1086 0.1137 1

Note: “Rejection” will be 1 if the result of the test is that the null can be rejected at a certain significance level. The
number of bootstrapping simulations is B = 100 and the number of simulations for approximating the expected likelihood
is S = 100.
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