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In this article, we revisit the univariate unobserved-component (UC) model of the
US GDP by relaxing the traditional random-walk assumption of the permanent
component. Since our general UC model is unidentified, we investigate the upper
bound of the contribution of the transitory component, and find the GDP fluctua-
tion is dominated by the permanent component.
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I. Introduction

Morley et al. (2003) study the equivalence of univariate
unobserved-component (UC) model and the Beveridge–
Nelson (BN) (1981) decomposition. They conclude that
the permanent component of the US GDP extracted by the
UC model is exactly the same as the BN trend. The
innovations of the two (permanent and transitory) compo-
nents are highly negatively correlated (further discussions
about this point can be found in a recent paper by Oh et al.
(2008)). The nonorthogonality of the two innovations is
mainly caused by the random-walk assumption imposed
on the permanent component, see Nagakura (2008) for the
formal discussion. In this article, we relax the random-
walk assumption by allowing the permanent component to
follow a general unit root process. Under our assumption,
the real GDP can be decomposed into two orthogonal
parts so that the impulse responses to permanent and
transitory shocks can be implemented. Since our general-
ization of the random-walk assumption increases the para-
meter set of the UC model, the model becomes

unidentified. However, we can investigate the upper
bound of the contribution of the transitory component to
GDP and study the dynamics of this extreme case by
implementing impulse response and variance decomposi-
tion. We find that the transitory component explains less
than 35% of output volatility; therefore, the permanent
component is the main source of the GDP fluctuation.

II. The UC Model

Our modified UC representation takes the form

yt ¼ gt þ ct

gt ¼ μþ gt�1 þ Θq1ðLÞ
Φp1ðLÞ

ηt; η , i:i:d Nð0; σ2ηÞ (1)

ct ¼ Θq2ðLÞ
Φp2ðLÞ

εt; ε , i:i:d Nð0; σ2ε Þ
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where {yt} is the log real GDP, and {gt} is an unobserved
permanent component with a unit root (i.e. its first differ-
ence is an autoregressive-moving-average (ARMA)
(p1; q1) process with drift μ). The unobserved transitory
component {ct} is a stationary ARMA (p2; q2) process.
Moreover, we assume the two innovations satisfy

covðηt; εt�kÞ ¼ σηε
0

for k ¼ 0
otherwise

�

The parameters under interest include the mean growth
rate μ; and the coefficients of the two ARMA process,
Φp1ðLÞ;Θq1ðLÞ;Φp2ðLÞ;Θq2ðLÞ; ση; σε; σηε

� �
:

Writing the model (1) more compactly gives the
ARIMA representation of yt,

Φp1ðLÞΦp2ðLÞΔyt ¼ Φp1ð1ÞΦp2ð1Þμ
þ Φp2ðLÞΘq1ðLÞηt
þ ð1� LÞΦp1ðLÞΘq2ðLÞεt

(2)

This expression implies we can recover the parameters of
the UC model by estimating the growth rate of GDP as a
ARIMA process. Here, we follow the strategy of Morley
et al. (2003) to estimate the GDP as an ARIMA (2,1,2)
process:1

ð1� f1L� f2L
2ÞΔyt ¼ ð1� f1 � f2Þμ�

þ ð1þ θ1Lþ θ2L
2Þut

(3)

Table 1 reports the estimated results. Note that γj are the
j-th order auto-covariance of MA part of the ARIMA
process, and μ�; σu and γj are in percentages. The
data used are US quarterly real GDP from 1948:Q1 to
2008:Q1.

The absence of real roots in AR part indicates that the
polynomial ð1� f1L� f2L

2Þ cannot be factored further.
This fact induces us to determine the form of Φp1ðLÞ and
Φp2ðLÞ only in two alternative ways: Φp1ðLÞ ¼ 1;

Φp2ðLÞ ¼ ð1� f1L� f2L
2Þ or Φp1ðLÞ ¼ Φp2ðLÞ ¼

ð1� f1L� f2L
2Þ.2 Obviously, the first case is just the

specification in Morley et al. (2003) in which permanent
component gt is a randomwalk. And the second case is the
one we want to discuss in which gt is a general ARIMA
(2,1,2) process.

Once Φp1ðLÞ and Φp2ðLÞ are determined, we can find
the form of MA polynomials Θq1ðLÞ and Θq2ðLÞ: In parti-
cular, to ensure the right-hsnd side RHS of Equation 2 be a
MA(2) process, Θq1ðLÞ and Θq2ðLÞ can at most take the
form of 1þ ψ1Lþ ψ2L

2ð Þ and 1þ θLð Þ, respectively.
Now the parameters of interest are fψ1;ψ2; θ; ση;
σε; σηεg,3 and the representation (2) is reduced to

ð1� f1L� f2L
2ÞΔyt ¼ ð1� f1 � f2Þμ

þ 1þ ψ1Lþ ψ2L
2

� �
ηt

þ ð1� LÞ 1þ θLð Þεt
(4)

Remember that we have estimated the auto-covariances
of the RHS of the last equation from the data, see
γ0; γ1; γ2f g in Table 1. Equate these moments to their

counterparts in Equation 4 and after some algebra, we
get three equations for six parameters ψ1;ψ2;f
θ; ση; σε; σηεg:

Table 1. Maximum likelihood estimates for ARIMA (2,1,2)

Estimate SE

Drift μ* 0.8264 (0.0765)
f1 1.3638 (0.1227)
f2 −0.7616 (0.0843)
θ1 −1.1039 (0.1319)
θ2 0.5976 (0.1004)
σu 0.9068 (0.0311)
AR roots (inverted) 0.8954 ± 0.7151i
γ0 2.1184
γ1 −1.4505
γ2 −0.4915
Log likelihood −317.2356

Long-run effect of ut 1.2411

σ2η ¼
γ0 þ 2γ1 þ 2γ2
1þ ψ1 þ ψ2ð Þ2

σ2ε ¼
�2ð1þ ψ1θ � ψ1 � ψ2θÞðγ2 � ψ2σ

2
ηÞ � ðθ � ψ2Þ½γ0 � ð1þ ψ2

1 þ ψ2
2Þσ2η�

2θð1þ ψ1θ � ψ1 � ψ2θÞ � 2ðθ � ψ2Þð1� θ þ θ2Þ

σηε ¼
θ½γ0 � ð1þ ψ2

1 þ ψ2
2Þσ2η� þ 2ð1� θ þ θ2Þðγ2 � ψ2σ

2
ηÞ

2θð1þ ψ1θ � ψ1 � ψ2θÞ � 2ðθ � ψ2Þð1� θ þ θ2Þ

(5)

1 Oh et al. (2008) also recommend this specification. They find that ARIMA (2,1,2) is preferred by the Akaike information criterion (AIC)
and ARIMA (1,1,0) is preferred by the Bayesian information criterion (BIC). However, the latter specification is not able to capture the
periodical behaviour of output due to its oversimplified structure.
2 The setting Φp1ðLÞ ¼ ð1� f1L� f2L

2Þ; Φp2 ðLÞ ¼ 1 is infeasible, since this will make the order of MA part of Δyt (the RHS of
Equation 2) exceed 2.
3 The mean growth rate μ is just the same as that in ARIMA representation.
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The MA(2) process has only three auto-variances, but we
have six unknown parameters. This implies our UC model
is unidentified.

In order to obtain two structural (or orthogonal) shocks,
we need to set σηε to be zero. The reader may ask whether
this restriction is feasible,4 since in Morley et al. (2003),
when permanent component is a random walk, two inno-
vations are always highly negatively correlated. In fact, as
long as the long-run effect (see the last row in Table 1) in
the ARIMA representation of GDP is larger than 1, the
orthogonality restriction in our modified UC model is
always feasible. A formal mathematical proof can be
found in Corollary 1 of Nagukara (2008).

To learn the relationships of the unknown parameters,
one method is to solve three of them as functions of the
other two. Unfortunately, equation system 5 is nonlinear
and fairly complicated, we cannot solve it in a closed form.
So we resort to numerical method. Figure 1 plots
ψ1; ση; σε

� �
as functions of ψ2 when θ ¼ 0: For other

values of θ in (−1,1), the pattern changes little. In addition,
to ensure Δgt be invertible and σ2ε be always positive, ψ2

must be in the range around 0.6–1.
One thing worth noting in Fig. 1 is that ψ1; ση; σε

� �
are

monotonic functions of ψ2, and the monotonicity does not
change for different θ. Furthermore, the SD of transitory
shock εt reaches its maximum when ψ2 approaches to 1.
Since σε is a continuous function of ψ2 and θ, without loss
of generality, we fix ψ2 ¼ 1 for different θ to find the
largest transitory component (in terms of variance) in our
modified UC model. Figure 2 plots σε against θ, when
ψ2 ¼ 1. From the figure, we can see that σε reaches its
unique maximum of 0.4442 at θ ¼ �0:63:

The above analysis implies that our UC model can be
just identified, if the transitory and permanent components
are forced to be orthogonal and the volatility of transitory
component reaches its upper bound. In Section III, we will
study the dynamic features of the two components under
the above identification method and compare the results
with those obtained by using the Blanchard–Quah (BQ)
(1989) decomposition.

III. Dynamics

The largest possible variance of the transitory component
fctg has SD of 0.4442 when setting θ ¼ �0:63 and
ψ2 ¼ 1: The remaining parameters ψ1 and ση can be
solved directly from equation system 5. In particular, we
have ψ1 ¼ �1:2612 and ση ¼ 0:6059.5 Since both BQ
(1989)6 and our UC model implement orthogonal decom-
position with a general unit root permanent component,
we can use impulse responses and variance decomposition
to compare our results with theirs. To ensure consistency
(i.e. GDP in the bivariate BQ decomposition must also
follow an ARIMA (2,1,2) process), we estimate a two-
variable vector autoregression (VAR) system with GDP
growth and unemployment rate as a vector ARMA (1,1)
process. We use RATS 7.0 (Estima, Evanston, IL, USA) to
conduct the estimation.

Figure 3 plots the impulse responses of GDP to a one
SD permanent and transitory shock, respectively.7 In par-
ticular, under the permanent shock ηt (the left graph),
output in our UC model has a larger and periodic response
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Fig. 1. The relationship between {ψ1, ση, σɛ} and ψ2 when θ = 0

4 Here, ‘feasible’ means that equation system 5 always has solution when σηε ¼ 0.
5 The parameters fσε; ση;ψ1g are statistically significant, we calculate their t-statistics by bootstrapping method, but not reported here.
6 In their paper, Blanchard–Quah (BQ) decompose GDP based on a structural bivariate VAR system of (ΔGDP, unemployment rate).
They just identify the model by imposing a long-run restriction on the transitory component.
7 The dashed lines are 95% bootstrapped confidence interval computed (200 replications) by Hall’s percentile interval.
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compared with that obtained by the BQ method. The
maximum response climbs to the peak after six quarters.
The long-run effect of the permanent shock is also sig-
nificantly larger (about 1.1), while under the BQ decom-
position this value is only around 0.6. Under the transitory
shock εt (the right graph), output movement in our model
dies out quickly, while under the BQ decomposition the
response is much larger and more persistent.

To see the relative importance of two shocks to the GDP
volatility, Table 2 reports the variance decomposition, i.e.
the proportion of fluctuations due to transitory shock εt in
different forecasting horizons.

The numbers in parentheses are 95% confidence inter-
vals. Even though these error bands of the BQ decomposi-
tion are large, contribution of transitory shocks to GDP are
significantly lower in our model even compared with the
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Fig. 2. The maximum of σɛ for different θ in (–1,1)

5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
(a) (b)

Quarters

P
er

ce
nt

ag
e 

de
vi

at
io

n 

5 10 15 20 25 30 35 40
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Quarters

P
er

ce
nt

ag
e 

de
vi

at
io

n

Our model

Our model
BQ decomposition

BQ decomposition

Fig. 3. Impulse responses of GDP to different shocks. (a) Response to permanent shock, (b) Response to transitory shock
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lower bound of the BQ decomposition (except for the
impact period). That is, our model attributes most fluctua-
tions of output to permanent shock; the transitory compo-
nent is less important.

To see what may have caused these discrepancies in
the two different approaches, we compare the data-
generating processes of output implied by these two
estimations. Since we estimate the bivariate system of
BQ decomposition as a vector autoregressive-moving-
average (VARMA) (1,1) process, the growth rate of
GDP can be recovered as an ARMA (2,2) process.
Table 3 (in comparison with Table 1) lists the implied
parameters under the VARMA. Clearly, these different
values implied by the VARMA (1,1) and the univariate
ARMA (2,2) induce a much smaller long-run effect.
This explains why the permanent shock in the BQ
decomposition has smaller long-run effect than what
we obtain in the UC model.8

IV. Conclusions

This article re-examines the UC method of decomposition
of GDP by relaxing the random-walk assumption made in
the existing UC literature. Based on this generalization,
we are able to decompose GDP into two orthogonal com-
ponents: permanent and transitory. The orthogonality
allows us to conduct impulse response analysis and var-
iance decompositions. We find that the permanent

component explains the bulk of GDP fluctuations, in
sharp contrast to the conclusion reached by Blanchard
and Quah (1989).
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