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We estimate a DSGE model with (S,s) inventory policies. We find that (i) taking
inventories into account can significantly improve the empirical fit of DSGE models in
matching the standard business-cycle moments (in addition to explaining inventory
fluctuations); (ii) (S,s) inventory policies can significantly amplify aggregate output
fluctuations, in contrast to the findings of the recent general-equilibrium inventory
literature; and (iii) aggregate demand shocks become more important than technology
shocks in explaining the business cycle once inventories are incorporated into the model.
An independent contribution of our paper is that we develop a solution method for
analytically solving (S,s) inventory policies in general equilibrium models with hetero-
geneous firms and a large aggregate state space, and we illustrate how standard log-
linearization methods can be used to solve various versions of our inventory model,
generate impulse response functions, and estimate the model's deep structural para-
meters.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Inventories and inventory investment are a large part of economic activities. For example, for the post-war period, the
stock of finished goods inventories is about 60% of quarterly gross domestic product (GDP) and 83% of aggregate
consumption. In addition, despite the tiny share of inventory investment in GDP (less than 1% on average), the drop in
inventory investment often accounts for the bulk of the drop in GDP in post-war recessions.1 It is in this sense Blinder (1981)
concludes that “to a great extent, business cycles are inventory fluctuations” (Blinder, 1981, p. 500).

The question why inventories are so volatile and apparently contribute so much to aggregate output fluctuations still
remains a puzzle despite more than three decades of intensive research since Blinder's work. Conventional wisdom has it
that inventory investment contributes greatly to the business cycle because it comoves with sales (see, e.g., Blinder, 1981;
Blinder and Maccini, 1991). However, Khan and Thomas (2007a) and Wen (2011) show that this conventional wisdom may
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be wrong from a general-equilibrium viewpoint. Using general-equilibrium frameworks with microfoundations for firms'
inventory demand behaviors, these authors show that inventories do not amplify the business cycle even though changes in
the inventory stock are procyclical and can be 10–20 times more volatile than GDP.

Despite the importance of inventories in economic activity and their potential role in understanding the business cycle,
full-fledged general-equilibrium analysis of inventories with explicit microfoundations is still rare. In addition, even if
microfoundations of inventory behaviors are provided in general-equilibrium models, as in the recent analyses of Fisher and
Hornstein (2000), Khan and Thomas (2007a), Wang and Wen (2009), and Wen (2011), this literature so far has relied on
calibrations and a single aggregate shock (or one shock at a time) to study the implications of inventory fluctuations for the
business cycle. Thus, quantitative questions such as how much can inventories explain the business cycle and how
important are different sources of aggregate shocks in generating the inventory cycle and output fluctuations remained
largely unanswered by this recent microfounded general-equilibrium inventory literature.

Part of the reason for this lack of formal econometric estimation and variance decomposition in a microfounded general-
equilibrium inventory model is computation costs, especially when inventories are introduced through the (S,s) policy rule.2

Even though (S,s) inventory models based on fixed order costs are an important framework for studying inventory dynamics
and their interactions with the business cycle,3 a fundamental challenge for working with this framework, however, is
computability and tractability. Blinder once commented:
2 S
3 Im

among
4 H

inactiv
inactiv
If firms have a technology that makes the S, s rule optimal, aggregation across firms is inherently difficult. Indeed it is precisely
this difficulty which has prevented the S, s model from being used in empirical work to date (Blinder, 1981, p. 459).
We build a microfounded, fully fledged dynamic stochastic general equilibrium (DSGE) (S,s) inventory model with both
idiosyncratic and aggregate shocks as well as real rigidities. Firms hold inventories to minimize fixed order costs for
intermediate inputs. Under idiosyncratic firm-specific fixed cost shocks, there exists a well defined distribution of inventory-
holding firms characterized by (S,s) policy rules. We estimate the key structural parameters of the model by the method of
simulated moments and we obtain the following new findings:
1.
 Taking inventories into account can significantly improve the empirical fit of a DSGE model in matching standard
business-cycle moments, in addition to explaining inventory fluctuations.
2.
 Consistent with the conventional wisdom, we find that inventories amplify the business cycle significantly in our
microfounded general-equilibrium inventory model, in contrast to the findings of the existing general-equilibrium
inventory literature (i.e., Khan and Thomas, 2007a; Wen, 2011).
3.
 Incorporating inventories into our model enhances the role of transitory (especially aggregate demand) shocks as a
driving force of the business cycle and makes demand shocks more important than technology shocks in explaining
short-run fluctuations in aggregate output.

Our findings suggest that inventories arising from minimizing fixed order costs are important for understanding the
general features of the business cycle. Models that ignore inventories may lead to incomplete understanding of economic
fluctuations or biased estimations about the relative importance of different shocks.

An independent contribution of this paper is computational. The presence of fixed order costs in an (S,s) inventory model
yields a discrete ordering decision, which makes a firm's dynamic programming problem nonconvex. In addition, the
occasionally binding non-negative nature of inventory holdings imposes a nonlinear constraint on a firm's inventory stock,
which makes a firm's value function not differentiable everywhere. General equilibrium analysis compounds the difficulties
because in general equilibrium, one needs to track the distribution of inventory holdings at the firm level for any given
macro state space (such as the aggregate capital stocks, the level of wealth or asset holdings, lagged aggregate investment
and consumption, inventory distributions, and aggregate shocks), yet part of the macro state space is itself determined by
the sum of individual firms' inventory decisions. Due to the curse of dimensionality, numerical computation methods such
as the one proposed by Krusell and Smith (1998) become increasingly difficult to implement if the state space is relatively
large, as is the case in our model or many standard macro models (that feature multiple capital stocks, investment
adjustment costs, habit formation, or multiple aggregate shocks). Estimating such a model requires solving the model
repeatedly, making it a close-to-impossible task under the Krusell–Smith numerical method. In addition, the Krusell–Smith
method cannot guarantee the existence and uniqueness of equilibrium, as discussed by Miao and Wang (in press) and others.

This paper overcomes this technical hurdle by making (S,s) inventory policies in general equilibrium models tractable
despite a potentially very large aggregate state space. Our approach builds on the strategy of Dotsey et al. (1999) in the state-
dependent pricing literature.4 Due to the i.i.d. nature of fixed order costs, we show that all ordering firms have the same
inventory target regardless of their inventory level in the previous period. And given a firm's inventory level in the previous
ee Wen (2011) for a tractable, microfounded inventory model based not on the (S,s) rule but on the stockout-avoidance motive.
portant works include Blinder (1981), Caplin (1985), Caballero and Engel (1991), Fisher and Hornstein (2000) and Khan and Thomas (2007a)
others.
owever, in an (S,s) inventory model, the problem at the firm level is more complex than that in the Dotsey–King–Wolman model. In our model, an
e firm also needs to solve a dynamic optimization problem to determine the optimal inventory level, whereas in the state-dependent pricing model
e firms simply set the current price to the previous level, and in the lumpy-investment model inactive firms simply set the current investment to
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period, the ordering decision follows a trigger (cutoff) strategy. Firms will order if and only if the fixed cost is below a unique
threshold. Such a structure implies that firms are distinguished only by the time since their last order was made, so the
distribution of inventories in the economy is discrete with finite support points and the optimal cutoff for each vintage-firm
group is history-independent. That is, regardless of the history of idiosyncratic shocks, firms that have placed orders in
period t� j will have the same amount of inventories if they have not ordered in the last j periods. In addition, firms that opt
to order in the current period will replenish their inventory to the same level regardless of their existing inventory level.
So we can group firms according to the time when their last order was made. This leads to a block-recursive structure in the
model, which permits exact aggregation and closed-form characterization of the general equilibrium.

Hence, the aggregate variables in the model form a system of nonlinear rational expectations equations that look
identical to those in a standard representative-agent model. Standard solution methods available in the RBC literature (such
as log-linearization around the steady state and higher-order perturbation methods) can then be applied straightforwardly
to solve the model's aggregate equilibrium paths, generate impulse response functions under aggregate shocks, and
estimate the model's structural parameters by standard econometrics.

The rest of the paper is organized as follows. Section 2 presents a baseline general-equilibrium inventory model with
idiosyncratic fixed order costs, multiple aggregate shocks, and several predetermined aggregate control variables. Section 3
derives the firm's (S,s) inventory rules in closed form. Section 4 studies the steady-state distributions of inventories and
compares the results with those of the existing literature (e.g., Khan and Thomas, 2007ba). Sections 5 and 6 estimate the
structural parameters of the model and study the model's business-cycle dynamics. Section 7 concludes the paper.

2. The baseline inventory model

Our model builds on the literature of (S,s) inventory policies (e.g., Blinder, 1981; Caplin, 1985; Caballero and Engel, 1991;
Fisher and Hornstein, 2000; Khan and Thomas, 2007a; among others). However, since Khan and Thomas (2007a) show that
(S,s) inventory behaviors do not matter for understanding output fluctuations in general equilibrium, it is natural for us to
adopt the Khan–Thomas (KT) framework as a benchmark for our analysis; but we enrich the KT model by introducing
multiple aggregate shocks and several real frictions to improve the model's empirical fit. More specifically, we allow for two
types of technology shocks—a shock to technology growth and a shock to its level. This setup ensures that we do not
underestimate the importance of technology shocks in our inventory model (since it gives supply-side shocks a better
chance to explain the business cycle in our estimation procedure). We also allow a single source of aggregate demand
shocks (represented by preference shocks in this paper), habit formation, investment adjustment costs, and variable
capacity utilization. Notice that these additional features will render numerical solution techniques, such as the one
proposed by Krusell and Smith (1998) and adopted by KT, difficult to implement because the state space is further enlarged
by multiple aggregate shocks and predetermined variables (such as lagged consumption and lagged investment). However,
these features do not impose additional difficulties on our tractable solution method. We will show that our enriched model
performs much better than the KT model in explaining the business cycle and inventory fluctuations. More importantly, we
will show that within this framework, inventories do matter for understanding the business cycle.

The economy has three types of agents: households, intermediate goods producers, and final goods firms. Households
derive utility from consumption and leisure according to a quasi-linear utility function with indivisible labor. Households
supply labor to all the firms and purchase consumption goods from the final goods firms. Intermediate goods firms produce
output using capital and labor. They also accumulate capital by making fixed investment, which is subject to investment
adjustment costs. Intermediate goods producers can also vary the capital utilization rate to adjust production level. The final
goods firms must pay fixed (stochastic) costs to order intermediate goods and they combine intermediate goods with labor
to produce final goods. The final goods can be used either as consumption goods or investment goods. Given the fixed costs
of placing orders, final goods firms have incentives to carry inventories to reduce the average order costs.

2.1. Households

As in KT, all households are identical (with a unit mass) and labor supply is indivisible. Households supply labor to both
the final goods sector and the intermediate goods sector. Due to perfect labor mobility, the real wages are equalized across
the two sectors. The final good is used as the numeraire.

A representative household chooses consumption ðCtÞ and labor supply ðNtÞ to solve

max E0 ∑
1

t ¼ 0
βt ½Δt logðCt�χCt�1Þþτð1�NtÞ� ð1Þ

subject to the budget constraint

CtrWtNtþΠt ; ð2Þ
(footnote continued)
zero. For the literature on state-dependent (S,s) inventory policies, see Caplin (1985), Caplin and Leahy (1991), Caballero and Engel (1991), Fisher and
Hornstein (2000), and Thomas (2002).
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whereWt is the wage rate, Πt is the aggregate profits from all the firms, χA ½0;1Þ is the habit-formation parameter, and Δt is a
preference shock that follows an AR(1) process in logarithm:

log Δt ¼ ρΔ log Δt�1þεΔt ; εΔt � iidð0; s2ΔÞ: ð3Þ

Households behave competitively, and their first-order conditions with respect to consumption and leisure are

Λt ¼
Δt

Ct�χCt�1
�βχEt

Δtþ1

Ctþ1�χCt
ð4Þ

τ¼ ΛtWt ; ð5Þ

where the marginal utility Λt is also the shadow price of consumption goods. So βΛtþ1=Λt will be the pricing kernel for
a firm's market value.
2.2. Intermediate goods firms

A large number of identical intermediate goods firms combine capital Kt and labor Lt to produce intermediate goods and
make investment to accumulate capital. A representative intermediate goods firm maximizes the discounted future
dividends:

E0 ∑
1

t ¼ 0
βt
Λt

Λ0
PtXt�WtLt� Itð Þ; ð6Þ

where Pt is the price of intermediate goods, Xt is the output, and It is the total investment expenditure. Given its
predetermined capital stock Kt, the intermediate goods firm can vary its capital utilization rate et and labor input Lt to
produce output according to the technology:

Xt ¼ AtðetKtÞαL1�α
t ; ð7Þ

where the aggregate technology shock At has two components, At ¼ AP
t A

T
t , where At

P
is the permanent component that

evolves according to the law of motion:

AP
t ¼ AP

t�1gt ; logðgt�gÞ ¼ ρg logðgt�1�gÞþεgt ; εgt � iidð0; s2g Þ: ð8Þ

gt is the growth rate with steady-state value gZ1, and At
T
is the transitory component that evolves according to

log AT
t ¼ ρT log AT

t�1þεTt ; εTt � iidð0; s2T Þ: ð9Þ

We assume that the depreciation rate of capital is strictly increasing and convex in et:

δt ¼ δ0þδ1e
γ
t ; γ41: ð10Þ

Investment is subject to investment adjustment costs, so the law of capital accumulation is given by

Ktþ1 ¼ 1�δ etð Þ½ �Ktþ 1�φ
It

It�1

� �� �
It : ð11Þ

The adjustment cost function φð�Þ is strictly increasing and convex with the property that φð1Þ ¼ φ0ð1Þ ¼ 0 and φ″ð1Þ40.
Denoting ηt as the Lagrangian multiplier for Eq. (11), the first-order conditions for fKtþ1; et ; It ; Ltg are given, respectively, by

ηt ¼ βEt
Λtþ1

Λt
αPtþ1

Xtþ1

Ktþ1
þ 1�δ etþ1ð Þ� �

ηtþ1

� �� �
; ð12Þ

αPt
Xt

etKt
¼ ηtδ

0 etð Þ; ð13Þ

1¼ βEt
Λtþ1

Λt
ηtþ1φ

0 Itþ1

It

� �
Itþ1

It

� �2
" #

ð14Þ

þηt 1�φ
It

It�1

� �
�φ0 It

It�1

� �
It

It�1

� �
; ð15Þ

Wt ¼ 1�αð ÞPt
Xt

Lt
: ð16Þ
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2.3. Final goods firms

The key part of the model is the final goods sector where inventories are held. Final goods firms combine intermediate
goods with labor to produce output. There is a fixed cost involved for each firm when ordering intermediate goods.
To minimize the average cost of ordering, firms opt to carry inventories to smooth ordering costs intertemporally according
to an (S,s) rule. So final goods firms will be heterogenous in their inventory positions.

As in KT, a typical final goods firm produces output yt according to the production function

yt ¼mθm
t nθn

t ; ð17Þ
where nt denotes labor and mt denotes intermediate goods input. Following KT, the fixed order cost is paid in labor units.
Denoting xt as the size of an order, the total cost of an order is then given by PtxtþεtWt , where Pt is the relative price of
intermediate goods, εt is the fixed cost measured in labor units, so εtWt is the fixed cost of placing an order. Following the
existing (S,s) policy literature (e.g., Caballero and Engel, 1999), εt is assumed to be independently and identically distributed
across time and firms, with the cumulative distribution function FðεÞ. This distribution has a finite support in the positive
domain with upper bound ε. Denoting st as the existing inventory level carried over from the last period, the law of motion
for inventory accumulation is given by

stþ1 ¼ stþxt�mt : ð18Þ
As in KT, there are storage costs involved in holding inventories. The storage cost is measured by final goods and

proportional to the level of inventories, ststþ1.
5 The aggregate state of the economy relevant to a firm is denoted by

Ωt ¼ fAt ;Kt ; It�1; μtg, which includes the aggregate technology shock At, the capital stock, and the lagged aggregate
investment It�1, plus the distribution of firms' existing inventory stocks μt. Given the firm-level state fst ; εtg and the
aggregate state Ωt, the value function of a firm can be denoted by Vðst ; εt ;ΩtÞ or Vtðst ; εtÞ for short.

A final goods firm's profit maximization problem is to solve

Vt st ; εtð Þ ¼ max
mt ;nt ;stþ 1 ;xt

(
mθm

t nθn
t �ststþ1�Ptxt�Wtðntþεt1xt a0Þ:

þβEt
Λtþ1

Λt
Vtþ1 stþ1; εtþ1ð Þ

)
ð19Þ

subject to Eq. (18) and the following non-negativity constraints:

stþ1Z0; ð20Þ

mtZ0; ð21Þ

ntZ0; ð22Þ
where 1xt a0 in the objective function is an index function, which equals 1 if an order is placed in period t and zero
otherwise. The solution to (19) is a set of sequences, ntðst ; εtÞ, xtðst ; εtÞ, mtðst ; εtÞ, and stþ1ðst ; εtÞ. Notice that it may be optimal
for a firm not to produce in period t with mt ¼ 0 and nt ¼ 0.

2.4. Competitive equilibrium

A competitive general equilibrium is a set of aggregate quantities for households and intermediate goods firms,
{Ct ;Nt ;Xt ;Ktþ1,Lt ; et ; It}, market prices, fηt ; Pt ;Wt ;Λtg, firm level quantities for final goods firms, {ntðst ; εtÞ; xtðst ; εtÞ,
mtðst ; εtÞ; stþ1ðst ; εtÞ}, and the distribution of firms' inventory stocks, fμtþ1g, such that households maximize utilities, firms
maximize profits, and all markets clear. Namely, a general equilibrium is characterized by the following conditions:
1.
com
Ct ;Nt and Λt satisfy Eqs. (4) and (5).

2.
 Xt ;Ktþ1; Lt ; et ; ηt ; It satisfy Eqs. (7), and (11) to (16).

3.
 fntðst ; εtÞ; xtðst ; εtÞ;mtðst ; εtÞ; stþ1ðst ; εtÞg solves (19).

4.
 Labor market clears

Nt ¼ Ltþ
ZZ

½ntðs; εÞþε1xðs;εÞa0� dμt dF : ð23Þ
5.
 Intermediate goods market clears

Xt ¼
ZZ

xtðs; εÞ dμt dF: ð24Þ
5 Since intermediate-good inventory stþ1 shares the same growth trend with the order of intermediate goods xt, and since total storage cost must be
parable to the value of intermediate-goods order Ptxt , we must allow st to share the same trend in intermediate-goods price Pt.
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Final goods market clears
6.
Ctþ It ¼
ZZ

ytðs; εÞ dμt dF ; ð25Þ

where ytðs; εÞ ¼mθm
t nθn

t �ststþ1ðs; εÞ is the production level of a final goods firm with inventory level s and fixed order cost ε.

7.
 The evolution of inventory stocks across firms is characterized by

μtþ1ðSÞ ¼
ZZ

1st þ 1ðs;εÞrS dμt dF; ð26Þ

where μtþ1ðSÞ � Pr½stþ1rS� denotes the cumulative distribution function of inventory stocks across final goods firms in
period tþ1, and 1st þ 1ðs;εÞrS is an index function.

3. Characterization of inventory decision rules

The above discussions suggest that as long as we can analytically solve for each individual final goods firm's decision
rules, {ntðst ; εtÞ; xtðst ; εtÞ, mtðst ; εtÞ; stþ1ðst ; εtÞ}, the general equilibrium can then be characterized in a tractable manner. The
purpose of this section is to show that the competitive equilibrium can be described by a system of closed-form nonlinear
difference equations and thus solvable by standard techniques available in the representative-agent DSGE literature.

We call firms that are placing orders in period t “active firms” and those not placing orders “inactive firms”. A final goods firm's
inventory decision rule can be characterized by a cutoff strategy: placing an order if εtrεnt ðstÞ and remaining inactive if εt4εnt ðstÞ.

Proposition 1. Denoting an active firm's optimal level of intermediate goods input by m0;t and the optimal inventory stock
carried over to the next period by s1;tþ1, a final goods firm's optimal decision rules for intermediate goods demand (mt), labor
demand (nt), and inventory holdings (stþ1) are given by

mt ¼
m0t if εtrεnt ðstÞ
mtðstÞ if εt4εnt ðstÞ

(
; ð27Þ

nt ¼

θn
Wt

� �1=ð1�θÞn
mθm=ð1� θnÞ

0t if εtrεnt ðstÞ

θn
Wt

� �1=ð1�θnÞ
mðstÞθm=ð1�θnÞ if εt4εnt ðstÞ

8>>>><
>>>>:

; ð28Þ

stþ1 ¼
s1;tþ1 if εrεnt ðstÞ
st�mtðstÞ if ε4εnt ðstÞ

(
; ð29Þ

where fm0;t ; s1;tþ1g are and must be state-independent, i.e., independent of the firm's existing inventory stock st and the history of
firm-specific cost shocks εt.

Proof. See Appendix A.

The inventory decision rule (29) implies that (i) all firms that decide to order intermediate goods in period t (i.e., firms
with small enough cost shocks) will replenish their inventories to the same level and thus carry the same amount of
inventories forward into the next period regardless of their individual history; and (ii) all firms that have placed their last
order in period t� j will have the same existing inventory stock at the beginning of period t regardless of their history. The
same logic applies to intermediate goods demand and labor demand since these variables depend on st. Therefore, firms are
distinguished only by the time since their last order of intermediate goods was made. This property greatly simplifies the
analysis and permits exact aggregation of final goods firms' decision rules. But because inactive firms' decisions are state-
dependent, we need to characterize the distribution of firms based on the time since their last order was made.

In anticipation of the results, assume that there are finite types of final goods firms distinguished by their inventory
holdings at the start of the period, st. We can divide all firms into vintage groups j¼ 1;2;…, where j is a positive integer. For
example, sj;t denotes the inventory level at the beginning of period t for firms that placed their last order in period t� j, and
analogously sjþ1;tþ1 denotes the inventory level at the start of period tþ1 for firms that placed their last order in period t� j.
However, sjþ1;tþ1rsj;t because of inventory depletion, unless a new order is placed.

As Eq. (29) suggests, a firm will eventually run out of stock if it has not ordered for a sufficiently long period of time due
to consecutive bad shocks. Let J be the biggest possible value of j such that sJ;t40 in period t. This means that if some firms
have not ordered for Jþ1 periods (or longer), they will have zero inventory in period t, so sJþk;t ¼ 0 for all kZ1. We can
group those firms with zero inventory into the same vintage group and label this group as vintage Jþ1. The fraction of
vintage j firms in the total population is denoted by ωj;t . Obviously, ∑

Jþ1
j ¼ 1ωj;t ¼ 1.

Hence, the distribution of inventory stocks across firms is discrete. At the start of each period t, there exists a fraction ωj;t

of firms with inventory level sj;t . The distribution ωj;t evolves according to the following simple mechanism. In period t, firms
will place an order if and only if the fixed cost facing them is below the threshold εnt ðsj;tÞ, or εnj;t for short. For these active
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firms, their inventory level will be adjusted immediately to s1;tþ1 after placing an order. So the total number of firms who
have just placed an order in period t and hence have inventory stock s1;tþ1 in period tþ1 is given by

ω1;tþ1 ¼ ∑
Jþ1

j ¼ 1
FðεnjtÞωjt ; ð30Þ

which is a discrete version of Eq. (26).
On the other hand, for each vintage j, there are ½1�Fðεnj;tÞ�ωj;t number of firms that do not order in period t. These firms

evolve according to

ωjþ1;tþ1 ¼ ½1�Fðεnj;tÞ�ωj;t for j¼ 1;2;…; J�1: ð31Þ

The total fraction of firms with zero inventories at the start of period tþ1 can consist of both vintage J firms and vintage
Jþ1 firms (notice that a firm in vintage Jþ1 will remain in that way if it does not order):

ωJþ1;tþ1 ¼ ½1�FðεnJ;tÞ�ωJ;tþ½1�FðεnJþ1;tÞ�ωJþ1;t : ð32Þ

The graphical presentation of the evolution of the cross-sectional distribution of firms in our model is analogous to that of
Thomas (2002, p. 516, Fig. 1).

Since there are Jþ1 types of firms and each type has a unique cutoff, the next step is to determine vintage j firms'
inventory stock sj;t (j¼ 1;2;…; Jþ1), inputs of intermediate goods mj;t (j¼ 0;1;2;…; J), and the associated cutoff εnj;t
(j¼ 1;2;…; Jþ1).6 Once we have determined mj;t , we can then determine employment using Eq. (28) and the output level
using production function. The complication involved is that all of these variables depend on the value functions of active
firms and inactive firms.

Proposition 2. Given the state of the aggregate economy Ωt, the system of equations to jointly determine the following set of
3ðJþ1Þþ1 variables, ffsj;tþ1gJþ1

j ¼ 1; fmj;tgJj ¼ 0; fεnj;tg
Jþ1
j ¼ 1

;Va
t g, is a set of value functions and firms' choices given by the following

3ðJþ1Þþ1 equations:

Va
t ¼ Rtmθ

0t�sts1;tþ1�Pt m0;tþs1;tþ1
� 	

þβEt
Λtþ1

Λt
Va
tþ1þPtþ1s1;tþ1�Wtþ1

Z
minfε; εn1;tþ1g dFðεÞ

� �
ð33Þ

Va
t þPtsj;t�Wtε

n

j;t ¼ Rtmθ
j;t�stsjþ1;tþ1

þβEt
Λtþ1

Λt
Va
tþ1þPtþ1sjþ1;tþ1�Wtþ1

Z
minðε; εnjþ1;tþ1Þ dFðεÞ

� �
; j¼ 1;2;…J ð34Þ

Va
t þPtsJþ1;t�Wtε

n

Jþ1;t ¼ βEt
Λtþ1

Λt
Va
tþ1�Wtþ1

Z
minðε; εnJþ1;tþ1Þ dFðεÞ

� �
ð35Þ

θRtmθ�1
j;t þst ¼ βEt

Λtþ1

Λt
Fðεnjþ1;tþ1ÞPtþ1þð1�Fðεnjþ1;tþ1ÞÞθRtþ1mθ�1

jþ1;tþ1

h i
;

j¼ 0;1;…; J�1 ð36Þ

sJþ1;tþ1 ¼ 0; ð37Þ

θRtmθ�1
0t ¼ Pt ; ð38Þ

mjt ¼ sjt�sjþ1tþ1; j¼ 1;2;…; J; ð39Þ
where θ¼ θm=ð1�θnÞ and Rt ¼ 1�θnð Þð θnWt

Þθn=ð1� θnÞ.

Proof. See Appendix B.

Eq. (33) is the value function of active firms in period t with zero beginning-period inventories. Eqs. (34) and (35) are the
value functions of inactive firms (Vn

j;t) in vantage j¼ 1;2;…; Jþ1. In both equations, we have substituted Vn
j;t with

Va
t þPtsj;t�Wtεnj;t using the cutoff Eq. (A.8) and the relation Va

j;t ¼ Va
t þPtsj;t . Eqs. (38) and (39) are the policy functions for

material input mj;t , j¼ 0;1;2;…; J.
Eqs. (36) and (37) are the optimality conditions for choosing the next-period inventory stock sjþ1;tþ1 (j¼ 0;1;2;…; J).

In particular, Eq. (37) is based on the definition for vantage Jþ1 and Eq. (36) is the Euler equation for intertemporal trade-off
between the marginal cost of increasing inventories today and the marginal benefit of having more inventories tomorrow.

Specifically, when j¼0, the left-hand side (LHS) of Eq. (36) equals Ptþst (based on Eq. (38)), which is the active firm's
marginal cost of increasing the inventory stock by placing a new order: for each unit of additional inventories the firm pays
6 Recall that sJþ1;t ¼ 0 and mJþ1;t ¼ 0. Firms with zero inventories also have a different cutoff, εnJþ1;t , in period t. This is why we let the index of cutoff
run up to Jþ1.
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Pt to order and st to store the goods. The right-hand side (RHS) of Eq. (36) is the marginal gain of increasing the inventory
stock. After ordering, the firm becomes a vintage j¼1 firm in the next period. It has a probability Fðεn1;tþ1Þ of placing a new
order and in such a case one additional unit of inventories will save the firm by

Ptþ1 ¼
∂Va

tþ1ðs1;tþ1Þ
∂s1;tþ1

in ordering cost in period tþ1. There is a probability ð1�Fðεn1tþ1ÞÞ that the firm will not order, in which case one additional
unit of inventories generates θRtþ1mθ�1

1;tþ1 units of profits. Eq. (36) thus states that the optimal inventory level for an active
firm (s1;tþ1) must be such that it makes the benefits and costs equal in the margin.

When j¼ 1;2;…; J�1, the LHS of Eq. (36) is the marginal cost of carrying one additional unit of inventories forward for an
inactive firm of vintage j. Increasing the inventory stock by one unit (without ordering) reduces the firm's operating revenue
by θRtmθ�1

jt units and incurs s units of storage costs. On the other hand, the RHS is the benefit of having one additional unit
of inventories available in the next period. With probability Fðεnjþ1;tþ1Þ the firm will place a new order, in which case one
additional unit of existing inventories can reduce the ordering cost by Ptþ1. With probability 1�Fðεnjþ1tþ1Þ, this firm will not
order and in such a case one additional unit of inventories can increase the firm's operating revenue by θRtþ1mθ�1

jþ1tþ1 units.

4. Steady state

4.1. The system of aggregate equations

Denoting the aggregate variables by capital letters, we have a dynamic system consisting 4ðJþ1Þþ15 variables:

Va
t ; fεnjtþ1gJþ1

j ¼ 1
; fsjtgJþ1

j ¼ 1; fmjtgJj ¼ 0; fωjtgJþ1
j ¼ 1;Ct ;Nt ;Xt ; St ;Mt ; Lt ; et ; ηt ; It ; Pt ;Wt ;Rt ;Λt ;Kt :

Among these variables, 14 are aggregate variables and 4ðJþ1Þþ1 are firm-specific variables pertaining to inventory
distributions. To solve for the competitive general equilibrium, we thus need 4ðJþ1Þþ15 equations, which are listed below.

Labor market clearing implies

Nt ¼ Ltþ ∑
J�1

j ¼ 0
njtωjþ1tþ1þnJt ½1�FðεnJtÞ�ωJtþ ∑

Jþ1

j ¼ 1
ωjt

Z
εo εnjt

ε dFðεÞ; ð40Þ

where njt ¼ ðθn=WtÞ1=ð1�θnÞmθm=ð1� θnÞ
jt for j¼ 0;1;2;…; J. The aggregate inventory at the beginning of period t is

St ¼ ∑
Jþ1

j ¼ 1
ωj;tsj;t : ð41Þ

The total intermediate goods input is

Mt ¼ ∑
J�1

j ¼ 0
mjtωjþ1tþ1þmJt ½1�FðεnJtÞ�ωJt : ð42Þ

Intermediate goods market clearing requires

Xt ¼ Stþ1þMt�St : ð43Þ
final goods market clearing implies

Ctþ It ¼ Yt � ∑
J�1

j ¼ 0
yj;tωjþ1;tþ1þyJ;t ½1�FðεnJ;tÞ�ωJ;t ; ð44Þ

where yj;t ¼ Rtmθ
j;t=ð1�θnÞ�stsjþ1;tþ1, with sJþ1;tþ1 ¼ 0. In the intermediate goods firm's profit function, Rt is defined by

Rt ¼ 1�θnð Þ θn
Wt

� �θn=ð1� θnÞ
: ð45Þ

In addition, we have the first-order conditions for households in Eqs. (4) and (5), and the first-order conditions for
intermediate goods firms in Eqs. (7), and (11)–(16). These together constitute 14 equations. The remaining 4ðJþ1Þþ1
equations come from Eqs. (30) to (39).

4.2. Steady-state distributions

We detrend all variables in the model by the long-run growth trend of technology. A steady state in the detrended model
is an equilibrium without aggregate uncertainty (i.e., At ¼ gtA and Δt ¼ Δ), in which all detrended aggregate variables and
the distribution of inventories are constant over time. We label those detrended variables with tilde “�”. Since st share the
same growth trend with intermediate-goods price Pt, we can redefine st ¼ ~sPt , where Pt is the growth trend in Pt. Under the
assumptions that φ0ð1Þ ¼ φð1Þ ¼ 0 for adjustment costs and e¼1 for the capacity utilization rate in the steady state, our
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model has the same steady state as in the KT model (if there is no long-run growth, i.e., g ¼ 1). Hence, these assumptions
facilitate comparisons between the results in our model and the existing literature.7

The detailed steps for solving the steady state, especially the steady-state distribution of inventories, are provided in
Appendix C. The key is to determine the relative price of intermediate goods ~P . Given ~P , we can solve for the steady-state

wage ~W using Eq. (16) and the value of ~R. Then Eqs. (30)–(39) can be used to solve for f ~V a
; fεnj g

Jþ1
j ¼ 1

; f~sjgJþ1
j ¼ 1; f ~mjgJj ¼ 0; fωjgJþ1

j ¼ 1g.
Given these firm-level variables, the aggregate variables can be solved easily using Eqs. (40)–(45).

Calibration and estimation: The fixed order cost shock is assumed to follow a uniform distribution with support ½0; ε�, as in
KT. We partition the model's parameter space Θ into two subsets. The first subset Θ1 includes only the parameters that affect
the steady state. This parameter set is given by Θ1 ¼ fβ; τ; α; θm; θn;δ; ~s; εg, which can be calibrated by the steady-state
aggregate relations (or the model's first moments). All parameters in Θ1 are common between our model and the KT model,
so we can set their values according to the calibration method in KT. In addition, we also fix the value of the long-run growth
rate of TFP (g) according to the quarterly utilization-adjusted TFP series in Fernald (2009), which is g ¼ 1:0021. Table 1
summarizes the calibrated parameter values.8

The second subset of parameters Θ2 is specific to our inventory model and these parameters do not affect the steady-
state ratios and the distribution of firms' inventory stocks. They affect only the business-cycle dynamics of the model (or
higher moments). This second parameter set is given by Θ2 ¼ fχ; γ; ~φ; ρg ; ρT ; ρΔ; sg ;sT ; sΔg, where χ is the habit formation
parameter, γ is the elasticity parameter in the depreciating function δðetÞ, ~φ � φ00ð1Þ is the elasticity parameter regarding
investment adjustment cost in the steady state, and the remaining parameters in Θ2 are related to the shock processes. We
will use the simulated method of moments to estimate Θ2 in the next section.

Under the calibrated parameter values for Θ1, the steady-state distributions of inventory-holding firms in our model are
reported in Table 2. Since g has little effect on the model's steady state, our model should be able to replicate the steady state of the
KT model even though we use a new solution method in this paper entirely different from KT's numerical method. Indeed, Table 2
shows that our results are very similar to the results reported by Khan and Thomas (2007a, Table 2). If we set g ¼ 0, then we can
replicate the results of KT exactly up to the third digit. In Appendix D, we discuss the accuracy of our solution method in more
detail.9

Using the words of KT, Table 2 shows that firms are distributed over six levels of inventories at the start of the period, reflecting
six vintage groups. This vintage distribution is in columns labeled from 1 to 6, while the first column (labeled active firms)
represents those firms from each of these six groups that undertake inventory adjustment prior to production. The inventory level
selected by all adjusting (active) firms is 1.652 in the steady state. Firms that adjusted their inventory holdings in the last period
(those in column 1) begin the current period with 1.129 units of the intermediate good and a low probability of adjustment,
Fðεn1Þ ¼ 0:033. Because inventory holdings decline with the time since the last order, firms are willing to accept larger adjustment
costs as they move fromvintage 1 across the distribution to vintage 6. The existence of fixed order costs implies that the adjustment
probability is less than one for all vintage groups. In fact, even among the 0.028 firms that begin the period with no inventory, only
78.1 percent adjust prior to production. The remainder forego production in the current period and await lower adjustment costs.
5. The business-cycle implications of inventories

5.1. Control model

To examine whether inventories are important for the business cycle, we estimate our model and compare its predictions
with a control model in which there are no inventories (i.e., ε ¼ 0).10 Since final goods firms are identical in the control
model because they do not carry inventories, the problem of the control model can also be cast as a representative-agent or
social planner's problem11:

max
Ct ;et ;It ;Mt ;Nt ;Lt ;Kt þ 1

E0 ∑
1

t ¼ 0
βt ½Δt logðCt�χCt�1Þþτð1�Nt�LtÞ� ð46Þ

subject to

Ctþ ItrMθm
t Nθn

t ð47Þ

Mt ¼ AtðetKtÞαL1�α
t ð48Þ
7 Having a positive steady state growth in the technology and assuming eo1 in the steady state do not affect our results significantly.
8 The calibrated values for ε and τ are slightly different from those in the KT model, since our model contains a long-run trend g40. But the results are

very similar.
9 The minor difference may be due to numerical approximations. KT adopted a cubic spline approximation for solving the value functions of firms,

while we compute the value functions recursively by a set of closed-form nonlinear equations.
10 As pointed out by KT, when ε ¼ 0, final goods firms can order the exact quantity of intermediate goods to use in the current production without

delivery costs. In this case, firms opt not to carry any inventories.
11 Notice that our control model is not the same as the control model in KT except in the steady state, since we allow multiple shocks and real frictions.



Table 1
Calibrated parameter values in Θ1.

β τ α θm θn δ ~s ε g

0.984 2.250 0.374 0.499 0.328 0.017 0.012 0.240 1.0021

Table 2
Steady-state distribution of inventory firms.

Vintage (j) Active firms 1 2 3 4 5 6

Distribution ωðsjÞ 0.259 0.251 0.220 0.160 0.082 0.028
Inventories sj 1.652 1.129 0.693 0.346 0.105 0.006 0.000
Fraction adjusting Fðεnj Þ 0.033 0.124 0.271 0.485 0.730 0.781
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Ktþ1 ¼ 1�δ etð Þð Þþ 1�φ
It

It�1

� �� �
It : ð49Þ

5.2. Estimation

As in KT, gross domestic product (GDP) in this paper is measured as the sum of aggregate final goods output plus the
value of intermediate goods inventory investment based on the value-added approach:

GDPt ¼ Ctþ ItþPtðXt�MtÞ; ð50Þ
where Pt is the relative price of inventories.

In the presence of aggregate shocks, our model can be solved by log-linearization around the steady state. We generate
artificial time series from the model, apply the HP filter to both model-generated data and the real world data, and use
simulated method of moments to estimate the structural parameters in Θ2. In particular, the estimator Θ̂2 solves

Θ̂2 ¼ arg min
Θ2

½ΨData�ΨModelðΘ2Þ�0WT ½ΨData�ΨModelðΘ2Þ�; ð51Þ

where ΨData and ΨModelðΘ2Þ are the business-cycle moments implied by the actual data and the model, respectively; and WT

is a weighting matrix. For simplicity, we assume that WT is an identity matrix. Notice that the structural parameters in the
control model (Θ2) are re-estimated by the simulated method of moments, so our comparative analysis puts the two models
on an equal base.

To construct the data moments ΨData, five quarterly U.S. time series are used, including real GDP ðGDPtÞ, real consumption
ðCtÞ, real fixed investment ðItÞ, aggregate inventory–to-sales ratio ðSYtÞ, and hours worked (Nt).12 All data series and model-
generated series are HP filtered. We target 14 business-cycle moments: the variances and the first order auto-covariances of
the five data series, as well as the 4 covariances of fCt ; It ; SYt ;Ntg with respect to GDP.

Table 3 (top panel) reports the estimated parameter values for the parameter set Θ2 in the baseline model and the control
model (numbers in parentheses are the asymptotic standard errors computed according to Ingram and Lee (1991)).13 The
estimated parameter values are reasonable and consistent with much of the existing literature. All the estimation values,
except the investment adjustment cost parameter ~φ and the persistence parameter for transitory technology shock At

T
, are

precisely estimated with high statistical significance. The habit formation parameter χ is about 0.5, the investment
adjustment cost parameter is about 0.4 (with a large standard error), and the depreciation elasticity of capacity utilization
γ is about 1.7. Regarding the exogenous shocks, the technology growth shock is serially correlated with ρg ¼ 0:25, the
transitory technology shock is less persistent than assumed in the literature with ρT ¼ 0:39, and the demand shock Δt is
highly persistent with ρΔ ¼ 0:98. The high persistence of the demand shock is consistent with the existing literature that
emphasizes demand shocks (e.g., Wen, 2004).

Table 4 reports the predicted business-cycle moments ΨModelðΘ2Þ based on the estimated parameters Θ̂2 (for both the
inventory model and the control model, respectively). The table has four panels—top-left, top-right, bottom-left, and
bottom-right panel, corresponding respectively to four moments—STD, relative STD, correlation with GDP, and autocorrela-
tions of seven macro variables. In each panel, the first column pertains to data, the second column to the inventory model,
and the third column to the control model. The inventory model matches the data quite well in all moments for all variables,
better than those of the control model in general (note that the control model's parameters are re-estimated by the method
of moments to yield the best fit). For example, the last column of the top-right panel shows that the control model
over-predicts the relative standard deviations of consumption, investment, and employment by a significant margin
compared to the inventory model.
12 These series are directly taken from Wen (2011), which can be downloaded from http://www.aeaweb.org/aej/mac/data/2010-0095_data.zip
13 We simulate 5000 periods for each time series in our estimation.

http://www.aeaweb.org/aej/mac/data/2010-0095_data.zip


Table 3
Estimated parameters in Θ̂2.

Parameter χ ~φ γ ρg sg ρT sT ρΔ sΔ

Baseline 0.4995 0.3963 1.7394 0.2509 0.0122 0.3908 0.0032 0.9843 0.0130
(0.0081) (0.4342) (0.5665) (0.0274) (0.0009) (0.2914) (0.0017) (0.0206) (0.0008)

Control 0.5187 0.3714 1.1553 0.0138 0.0148 0.3226 0.0012 0.9958 0.0148
(0.0829) (0.4698) (0.3340) (0.2588) (0.0034) (0.9403) (0.0187) (0.0382) (0.0017)

Table 4
Business-cycle moments ΨModel.

STD Relative STD to GDP

Data Model Control Data Model Control

GDP 0.0195 0.0192 0.0180 – – –

Final sales 0.0169 0.0156 0.0180 0.8716 0.8103 1.0000
Consumption 0.0115 0.0126 0.0149 0.5908 0.6541 0.8250
Investment 0.0485 0.0484 0.0484 2.4903 2.5181 2.6839
Labor 0.0180 0.0189 0.0193 0.9254 0.9859 1.0723
Inventory/sales 0.0112 0.0124 – 0.5757 0.6462 –

Inventory Invest./GDP 0.0050 0.0083 – 0.2569 0.4292 –

Corr. with GDP Auto Corr

Data Model Control Data Model Control

GDP 1 1 1 0.9027 0.7679 0.8871
Final sales 0.9714 0.9081 1.0000 0.9136 0.8919 0.8871
Consumption 0.9206 0.9198 0.9970 0.8869 0.8704 0.8743
Investment 0.9479 0.8047 0.9762 0.9071 0.9382 0.9203
Labor 0.8389 0.8368 0.7737 0.9293 0.6742 0.8480
Inventory/sales �0.4577 �0.3585 – 0.7795 0.6144 –

Inventory Invst./GDP 0.5963 0.6144 – 0.4875 0.3614 –
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The supreme performance of the inventory model over the control model is also reflected in the minimum distance
between the model and the data moments captured by the objective function in Eq. (51). Specifically, the minimum distance
metric is 0.1744 for the inventory model and 0.7834 for the control model, suggesting that allowing for inventories can
substantially improve the empirical fit of a DSGE model, even though the DSGE (control) model already features multiple
aggregate shocks and several realistic frictions (such as habit formation, investment adjustment costs, and capacity
utilization) that can improve its empirical fit.

That inventories further improve the fit of a DSGE model is also evident in the KT model. For example, if we enrich the
original KT model by multiple shocks fAP

t ;A
T
t ;Δtg (but without real frictions such as habit formation, investment adjustment

costs, and variable capacity utilization), and estimate this model's parameters by our solution methods, the minimum
distance metric is 0.6010 for the KT model and 1.2910 for its counterpart control model. The minimum distances for all
different models considered are summarized in Table 5. Obviously, the KT model with inventories matches the data
moments much better than its own respective control model, but not significantly better than our control model without
inventories. Therefore, our inventory model is strongly preferred not only to the respective control model without
inventories but also to the KT model with inventories in terms of goodness of fit. For this reason, we use our inventory
model as a laboratory for examining the contributions of inventories in the business cycle.

To sum up, the main messages from this section are that (i) inventories can improve the empirical fit of a DSGE model
(regardless of the KT model or our model), and (ii) adding multiple shocks and real frictions can further improve the
empirical fit of an inventory model. However, these findings cannot tell us whether inventories amplify the business cycle or
not, which is the question we study in Section 5.3 below.
5.3. Variance decomposition

In addition to parameter estimations, our solution method allows us to conduct variance decomposition and impulse
response analyses. Khan and Thomas (2007b) emphasize the importance of technology shocks and the (S,s) inventory
adjustment in explaining the inventory cycle. But their conclusion is based on a model in which inventories do not matter
for aggregate fluctuations. Here we re-examine their findings based on a model in which inventories matter. We found that



Table 5
Minimum distance between model and data.

Our inventory model Our control model KT inventory model KT control model

0.1744 0.7834 0.6010 1.2910

Table 6
Output variance decomposition.

Our model KT model

Periods At
P

At
T

Δt At
P

At
T

Δt

1Q 10.8319 29.0954 60.0727 20.4405 46.5952 32.9644
4Q 53.4297 3.9570 42.6134 40.4148 17.4622 42.1229
8Q 55.1925 1.8427 42.9648 48.6908 10.3393 40.9699
40Q 64.3276 0.4413 35.2310 73.6050 3.4030 22.9920
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demand shocks are more important than technology shocks in explaining the short-run aggregate fluctuations of the U.S.
economy.

Table 6 reports variance decomposition of aggregate output in our inventory model (left panel) and in the multiple-shock
augmented KT model (right panel). In each panel, we report the contributions of the three aggregate shocks, fAP

t ;A
T
t ;Δtg, to

total output variance. First, the right panel confirms the analysis in Khan and Thomas (2007b) that technology shocks are
more important than demand shocks in explaining output movements. For example, in the short-run horizon of 1–8
quarters, demand shocks explain only about 33%–42% of output variations in the KT model. In the long-run horizon of
40 quarters, they explain less than 23% of output fluctuations. However, in our model where inventories matter (left panel),
demand shocks explain more than 60% of output variations in the very short run. Even in the long run horizon of
40 quarters, the contribution of demand shocks still remains about 35%.

Moreover, if we compare each inventory model with its counterpart control model, we found that allowing for
inventories reduces the contribution of demand shocks in the multiple-shock KT model, whereas it raises the contribution
of demand shocks in our model. This difference is closely related to the following analysis regarding whether inventories
matter or not for amplifying the business cycle.
6. Contributions of inventories to aggregate volatility

The conventional wisdom has it that inventories destabilize the economy because inventory investment is procyclical
and more volatile than sales. However, this conventional wisdom is challenged by Khan and Thomas (2007a) and Wen
(2011) using general-equilibrium analyses. This general-equilibrium literature shows that when sales are endogenous,
procyclical inventory investment has insignificant impact on production (Khan and Thomas, 2007ba) or may even
significantly stabilize the economy (Wen, 2011) because inventories can reduce the volatility of aggregate demand more
than amplifying the volatility of aggregate supply. KT and Wen's findings are different from each other because they use
models with different microfoundations for the existence of inventories—inventories exist in the KT model because of fixed
order costs and they exist in Wen's model because of stockout-avoidance motives.

In this paper, we found that inventories amplify the volatility of aggregate output significantly in a (S,s) inventory model,
in contrast to the finding of Khan and Thomas (2007a). To study the amplification effect of inventory to aggregate
fluctuations, we compare our baseline inventory model to its control model in which there are no inventories. Table 7 (left
panel) reports the predicted STD of aggregate output with and without inventories, as well as the STD of other variables.14

Obviously, inventories amplify the fluctuation of aggregate output by as much as 0:0192
0:0162� 19%. This amplification effect

derives mostly from a more volatile fixed capital investment and employment in the inventory model. Table 7 shows that
both investment and employment are significantly more volatile with inventories than without. Consistent with the finding
of Khan and Thomas (2007a), the volatility of final sales (and consumption) is reduced by inventories, but the reduction is
not significant enough to offset the higher volatility of total output due to a higher volatility of both capital investment and
inventory investment.

In contrast, the right panel of Table 7 shows that in the KT model (enriched by the three aggregate shocks), the volatility
of aggregate output remains essentially the same regardless of inventories. In particular, compared with its counterpart
control model without inventories, the KT inventory model decreases the volatility of output by less than 1%. The main
14 To make the comparison consistent, we set the parameters in the control models to the same values in the inventory model, as in the analysis of
KT (2007a).



Table 7
Predicted STD with/without inventories.

Baseline Control KT KT control

Output 0.0192 0.0162 0.0188 0.0189
Final sales 0.0156 0.0162 0.0149 0.0189
Consumption 0.0126 0.0135 0.0133 0.0137
Investment 0.0483 0.0455 0.0492 0.1189
Labor 0.0189 0.0159 0.0207 0.0209
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reason for this irrelevance result in the KT model is that the excess volatility introduced by procyclical inventory investment
is exactly offset by the reduced variability of final sales (mostly capital investment), as shown in the columns labeled KT and
KT Control, where the volatility of capital investment is reduced by nearly 60% and that of final sales is reduced by 22% with
inventories as opposed to without. However, in our model (the columns labeled Baseline and Control), such a crowding-out
(or trade-off) effect of inventory investment volatility on capital investment volatility is substantially mitigated so that
capital investment is more volatile with inventories than without. This increased volatility of investment and labor also
brings our model into a closer conformity to the data than the KT model even though the KT model is already augmented
and improved with two additional aggregate shocks.

Why do inventories destabilize output production in our model but not in the KT model? Our analyses below show that
variable capacity utilization and investment adjustment costs are key.

Effects of capacity utilization: Consider capacity utilization first. Since inventories amplify both technology shocks and
demand shocks in our model, we discuss only the case of technology shocks so as to make the results comparable to the
original Khan and Thomas (2007a) model where only technology shocks exist. The intuition under demand shocks is
analogous.

A positive technology shock reduces the prices of intermediate goods. This induces not only the active final goods firms
to increase the size of their orders but also some of the inactive firms to place orders. This incentive for building up
inventory stocks to reduce future fixed order costs increases the aggregate demand for intermediate goods more than in the
case with the control model. However, with fixed capacity utilization, the only way to increase intermediate output is to
expand labor input because capital is predetermined. Thus, a sharp increase in the production of intermediate goods to
satisfy inventory demand is possible if labor is diverted from the final goods sector to the intermediate goods sector so that
the increase of labor input in the final goods sector is less than it would otherwise be. This reallocation of labor reduces the
volatility of final goods production and thus offsets the positive contribution of inventory investment to GDP volatility,
generating the KT result.

With variable capacity utilization, however, intermediate goods production can be increased without necessarily
increasing labor input in this sector, regardless of inventories. So the general-equilibrium effect uncovered by KT—namely,
labor is diverted from the final goods sector to the intermediate goods sector—is not an issue. That is, a rising inventory
demand for intermediate goods can be met by a higher rate of capacity utilization even without labor reallocation. Given
this, even if labor were reallocated from the final goods sector to the intermediate goods sector to the same extent as in the
KT model, it would not completely offset the positive effect of inventory investment on GDP volatility.

In other words, because capacity utilization is a “local factor” of production, it does not compete with the final-goods
sector for resources. Hence, the general-equilibrium trade-off between inventory investment and final sales in the original
KT model is attenuated. This suggests that our result should continue to hold even in more general (S,s) models (such as a
model in which both the final goods sector and the intermediate goods sector use capital in production), precisely because
capacity utilization is a local input. Our finding thus suggests that inventories can still be significantly destabilizing to the
economy even though they may reduce the volatility of final sales in general equilibrium (as Table 7 shows).

KT argue that the existence of capital is essential for their results because inventories in their model can significantly
increase the volatility of GDP when capital is eliminated from the model or capital's share in output is significantly reduced.
Given that capacity utilization effectively reduces capital's share by making labor more variable (Wen, 1998), our results may
seem to be already anticipated by KT. This is not entirely true, however. For example, reducing capital share in the KT model
increases the steady state inventory-to-sales ratio significantly while introducing capacity utilization has no effect on the
steady state inventory-to-sales ratio. In addition, reducing capital share increases the relative volatility of fixed investment
but allowing for capacity utilization reduces it. Given that the KT model with realistic capital share already implies too large
a volatility of fixed capital investment, capacity utilization brings the KT model into closer conformity with the data while
reducing capital share does the opposite.

We can also show that the destabilizing effect of inventories on GDP gets stronger as the variability of capacity utilization
increases. Suppose we set χ ¼ ~φ ¼ 0, so that only capacity utilization remains operative in our model. In Table 8, the first row
represents the values of γ and the second row the relative volatility of the inventory model to the control model. As the value
of γ increases, it becomes more costly to adjust capacity utilization rate, so the destabilizing role of inventories diminishes.

Effects of investment adjustment costs (IAC): IAC imply that firms want to smooth out capital investment over time to avoid
the adjustment costs. In this case inventories will play a more strategic role for final goods firms to reduce fixed order costs
than when there are no IAC, because the total demand of final goods is now expected to persist for a longer period of time



Table 8
Sensitivity analysis.

γ 1.10 1.15 1.25 1.4 2.0 3.0
GDP volatility with inventory

GDP volatility without inventory

� �
1.46 1.34 1.21 1.13 1.05 1.02

~φ 0.1 0.5 1.0 1.5 2.0 3.0
GDP volatility with inventory

GDP volatility without inventory

� �
1.023 1.043 1.051 1.059 1.066 1.068

Fig. 1. Impulse responses to a demand shock.
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after a technology (or preference) shock. Given the lowered intermediate goods price after the technology shock and the
anticipated persistence in final sales in the future, firms will opt to increase inventory investment sharply, more so than they
would otherwise without IAC. This increased procyclicality and volatility of inventory investment significantly raises the
overall volatility of GDP. So the dampening effect of labor reallocation from the final goods sector to the intermediate goods
sector is no longer sufficient to offset the positive effect of inventory investment on GDP volatility when IAC exist.15 The
lower panel in Table 8 confirms that larger IAC imply a higher output volatility ratio, similar to the effects of capacity
utilization.16

Impulse responses: To help understand why demand shocks are more important in our model than in the KT model, we
shut down habit formation, capacity utilization, and investment adjustment costs in our baseline model and compare the
impulse response function of this simpler model (labeled “KT Model” in Fig. 1) with our baseline model under demand
shocks.

The left panel in Fig. 1 reveals that our model (solid line) dominates the KT model (dashed line) in explaining the
business cycle—because our model can generate hump-shaped persistence in almost all aggregate variables under demand
shocks whereas the KT model cannot. Most importantly, the right panel in the figure reveals that inventory investment in
the KT model (dashed line) is countercyclical (its correlation with output is negative) and not sufficiently volatile, whereas in
our baseline model (solid line) it is strongly procyclical (its correlation with output is positive) and far more volatile (as in
the data). Since a countercyclical inventory investment is inconsistent with the data, the impulse response analysis explains
15 The intuition is similar under persistent demand shocks. A positive demand shock implies that the demand for final goods will be persistently high,
so firms have incentives to increase inventory investment, and this increase is more in the presence of IAC than without.

16 Although habit formation (χ) is estimated to be significant, we do not find habit formation important in allowing inventories to amplify the
business cycle.
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why the KT model “dislikes” demand shocks whereas our model favors demand shocks when being estimated by the
method of moments.17
7. Conclusion

Fisher and Hornstein (2000) explicitly point out in a general-equilibrium model without capital that (S,s) inventory
policies do not necessarily generate inventory behaviors consistent with the data. Khan and Thomas (2007a) show in a
general-equilibrium model with capital that even if inventory investment can comove with sales and orders are more
volatile than sales, (S,s) inventory policies do not amplify the business cycle.

This paper argues that to correctly assess the role of inventories in the business cycle, it is preferable to start with a
model that can quantitatively match both the inventory behavior and the general business-cycle pattern of the data.
Therefore, we build on the existing literature by providing a full-fledged general-equilibrium (S,s) inventory model that can
closely match the observed business-cycle facts, including aggregate inventory behaviors. We estimate our model by the
method of moments. We find that when the model is in line with the observed business-cycle moments and aggregate
inventory behaviors, (S,s) type inventory behaviors do appear to be important in helping us understand the business cycle.
In particular, we find that (S,s) inventory policies can significantly amplify the business cycle.

An independent contribution of our paper is that we provide a tractable method to solve (S,s) inventory policies in a
general-equilibrium framework with both idiosyncratic and aggregate shocks. Our solution method enables us to estimate
the model's structural parameters that are key to business-cycle dynamics around the steady state. Since our solution
method can handle large state space with as many aggregate state variables as in a representative RBC model, we are able to
answer some questions the existing (S,s) inventory literature has not been able to fully address.18

However, as illustrated by Wang and Wen (2009) and Wen (2011), different incentives for inventory demands can have
dramatically different implications for the (de)stabilizing role of inventories. A similar point is also made by Chang et al.
(2009). Therefore, conclusions drawn from the (S,s)-type inventory models do not generalize to other types of inventory
models. In the end, which inventory models can better characterize inventory behavior is an empirical question open for
further studies.
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Appendix A. Proof of Proposition 1
Proof. We solve the firm's problem in several steps.
1.
per

obv
me
pro
foll
ma
We solve the firm's labor demand by

θnmθm
t nθn �1

t ¼Wt ; ðA:1Þ
which yields

nt ¼
θn
Wt

� �1=ð1� θnÞ
mθm=ð1�θnÞ

t : ðA:2Þ

Substituting this solution into the profit function gives

mθm
t nθn

t �Wtnt � Rtmθ
t ; ðA:3Þ
17 The results are similar if we use the fully estimated KT model as shown in the previous tables. Also, under technology shocks, our model also
forms significantly better than the KT model.
18 Appendix D provides direct comparisons between the accuracy of our solution method with that used in KT (2007a). Our new solution method
iously allows more state variables if they come in as scalars from the representative household or the representative firm. It is less clear how the same
thod could be used in the presence of new state variables arising from the inclusion of additional heterogeneity—e.g., persistent firm-specific demand or
ductivity shocks or micro-founded capital adjustment costs. It is possible that the method could be expanded to handle such additional heterogeneity
owing the approach described in the final section of King and Thomas (2006); however, that remains to be seen. In addition, the method we advocate
y not always handle the occasionally binding non-negativity constraints on inventories correctly when the system is sufficiently away from steady state.
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where θ¼ θm=ð1�θnÞ and
Rt ¼ 1�θnð Þ θn

Wt

� �θn=ð1� θnÞ
: ðA:4Þ
2.
 Define Va
t ðstÞ as the value function of an active firm that places an order in period t (excluding the fixed order cost) and

Va
t ðstÞ�εtWt as the firm's value function including the fixed order cost. Define Vn

t ðstÞ as the value function of an inactive
firm that decides not to order intermediate goods in period t. With these notations, the final goods producer's problem in
Eq. (19) becomes

Vtðst ; εtÞ ¼maxfVa
t ðstÞ�Wtεt ;V

n
t ðstÞg: ðA:5Þ

Define V tðstÞ ¼
R
Vtðst ; εÞ dFðεÞ as the average (expected) value of a firm with inventory stock st. So by definition we can

write the Bellman equation for Va
t ðstÞ as

Va
t stð Þ ¼ max

xt ;st þ 1
Rtðstþxt�stþ1Þθ�ststþ1�PtxtþβEt

Λtþ1

Λt
V t stþ1ð Þ: ðA:6Þ

The value function for an inactive firm (with xt ¼ 0) can be written as

Vn
t stð Þ ¼max

st þ 1
Rtðst�stþ1Þθ�ststþ1þβEt

Λtþ1

Λt
V t stþ1ð Þ: ðA:7Þ
3.
 Obviously, Va
t ðstÞZ Vn

t ðstÞ, since xt ¼ 0 is always a possible solution for the problem defined in (A.6). Comparing
Va
t ðstÞ�Wtεt and Vn

t ðstÞ for any given inventory level st, it is easy to see that there exists a cutoff value for the fixed cost,
εnt , such that

Va
t ðstÞ�Wtε

n

t ¼ Vn
t ðstÞ: ðA:8Þ

The above equation defines the cutoff as an implicit function of the firm's inventory stock st. So we can denote εnt ¼ εnt ðstÞ.
A firm will place an order (xt40) if and only if εtrεnt ðstÞ.
4.
 For a firm that decides to place an order, the first-order condition with respect to xt is

θRtmθ�1
t ¼ Pt ; ðA:9Þ

which solves for the optimal input level for an active firm, m0t ¼ ð Pt
θRt

Þ1=ðθ�1Þ. Note that the solution is independent of the
existing inventory stock and the fixed cost shock; i.e., it is state independent. By Eq. (A.2), the optimal labor demand is
also independent of fst ; εtg. We denote these state-independent variables as m0t and n0t. The first-order condition with
respect to inventory holding stþ1 is

θRtmθ�1
0t þst ¼ βEt

Λtþ1

Λt

∂V tþ1ðstþ1Þ
∂stþ1

: ðA:10Þ

Combining the previous two equations, we have

Ptþst ¼ βEt
Λtþ1

Λt

∂V tþ1ðstþ1Þ
∂stþ1

: ðA:11Þ

This implies that the optimal level of inventories for an active firm, stþ1, is also state-independent (i.e., it depends only on
the aggregate variables and not on the firm's history). That is, all firms that decide to place an order in period t will
replenish their inventory stocks to the same level regardless of their individual histories. We denote s1;tþ1 as the optimal
level of inventory stock carried over to period tþ1 by active firms.
5.
 We now turn to inactive firms which do not place orders in period t (i.e., εt4εnt ). The first-order condition for stþ1 in the
problem (A.7) is given by

θRtðst�stþ1Þθ�1þst ¼ βEt
Λtþ1

Λt

∂V tþ1ðstþ1Þ
∂stþ1

þπt ; ðA:12Þ

where πt is a Lagrangian multiplier associated with the non-negative constraint on stþ1. Notice that in this case
mt ¼ st�stþ1 because xt ¼ 0. The above equation defines the decision rules for intermediate goods input mt ¼mtðstÞ and
inventory holdings stþ1 ¼ st�mðstÞ. By Eq. (A.2), labor demand can be written as nt ¼ ntðstÞ. The decision rules at the firm
level are summarized by Eqs. (27)– (29). □
Appendix B. Proof of Proposition 2
Proof. First of all, by definition we have sJþ1;tþ1 ¼ 0. Also, for vintage-j firms that do not order in period t, we have
mj;t ¼ sj;t�sjþ1;tþ1 for j¼ 1;2;…; J. These give us Jþ1 equations that correspond to Eqs. (37) and (39) in Proposition 2.
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To prove Eq. (33), consider the value function of an active firm with vintage j:

Va
t sj;t
� 	¼ max

m0;t ;s1;t þ 1
Rtmθ

0;t�sts1;tþ1�Pt m0;tþs1;tþ1�sj;t
� 	þβEt

Λtþ1

Λt
V tþ1 s1;tþ1

� 	
 �
ðB:1Þ

where V tþ1ðs1;tþ1Þ is the expected value function with respect to idiosyncratic shock ε evaluated at s1;tþ1. Since the term
Ptsj;t on the right-hand side (RHS) does not affect the optimal choices (because sj;t is predetermined), we can define a new
value function (for active firms) that is independent of j:

Va
t ¼ max

m0;t ;s1;t þ 1
Rtmθ

0;t�sts1;tþ1�Pt m0;tþs1;tþ1
� 	þβEt

Λtþ1

Λt
V tþ1 s1;tþ1

� 	
 �
: ðB:2Þ

That is, Vt
a
equals Va

t ðsj;tÞ evaluated at sj;t ¼ 0. Now Va
t ðsj;tÞ can be rewritten as

Va
t ðsjtÞ � Va

j;t ¼ Va
t þPtsjt : ðB:3Þ

According to Eq. (A.8), the value function of inactive firms can be rewritten as

Vn
j;t ¼ Va

t þPtsj;t�Wtε
n

j;t : ðB:4Þ

For the maximization problem in Eq. (B.2), the first-order condition with respect tom0;t and s1;tþ1 is given, respectively, by

θRtmθ�1
0t ¼ Pt ðB:5Þ

Ptþst ¼ βEt
Λtþ1

Λt

∂V tþ1ðs1;tþ1Þ
∂s1;tþ1

; ðB:6Þ

where Eq. (B.5) corresponds to Eq. (38) in Proposition 2. Now we need to determine the derivative, ∂V tðsj;tÞ=∂sj;t . Notice that
by Eqs. (A.5) and (A.8), the expected value function V tðsj;tÞ is given by

V tðsj;tÞ ¼ Fðεnj;tÞVa
t ðsj;tÞþ½1�Fðεnj;tÞ�Vn

t ðsj;tÞ�Wt

Z
εo εnj;t

ε dFðεÞ: ðB:7Þ

Thus,

∂V tðsj;tÞ
∂sj;t

¼ Fðεnj;tÞ
∂Va

t ðsj;tÞ
∂sj;t

þ½1�Fðεnj;tÞ�
∂Vn

t ðsj;tÞ
∂sj;t

þ½Va
t ðsj;tÞ�εnj;t�Vn

t ðsj;tÞ�f ðεnj;tÞ
∂εnj;t
∂sj;t

Wt : ðB:8Þ

By Eq. (A.8), the last term is zero, so we have

∂V tðsjtÞ
∂sjt

¼ FðεnjtÞ
∂Va

t ðsjtÞ
∂sjt

þ½1�FðεnjtÞ�
∂Vn

t ðsjtÞ
∂sjt

: ðB:9Þ

The task of computing ∂V tðsj;tÞ=∂sj;t now reduces to calculating the partial derivatives ∂Va
t ðsjtÞ=∂sjt and ∂Vn

t ðsjtÞ=∂sjt .
According to Eq. (B.3), we immediately have19

∂Va
j;t

∂sj;t
¼ Pt : ðB:10Þ

To obtain ∂Vn
t ðsjtÞ=∂sjt in Eq. (B.9), we need to consider the value function of the inactive firms of vintage j. For j¼ 1;2;…J, we

have

Vn
t sj;t
� 	¼ max

mj;t ;sjþ 1;t þ 1
Rtmθ

j;t�stsjþ1;tþ1þβEt
Λtþ1

Λt
V tþ1 sjþ1;tþ1

� 	
 �
; ðB:11Þ

where mj;t ¼ sj;t�sjþ1;tþ1. The first-order condition with respect to sjþ1;tþ1 (j¼ 1;2;…; J) is given by

θRtmθ�1
jt þst ¼ βEt

Λtþ1

Λt

∂V tþ1ðsjþ1;tþ1Þ
∂sjþ1;tþ1

: ðB:12Þ

By the envelop theorem we have

∂Vn
t ðsj;tÞ
∂sj;t

¼ θRtmθ�1
j;t : ðB:13Þ

Now, putting (B.10) and (B.13) into Eq. (B.9) gives

∂V tðsj;tÞ
∂sj;t

¼ Fðεnj;tÞPtþ½1�Fðεnj;tÞ�θRtmθ�1
j;t : ðB:14Þ
19 This equation can also be obtained by applying the envelop theorem to Eq. (B.1).
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Plugging this equation into (B.6) and (B.12), respectively, gives

Ptþst ¼ βEt
Λtþ1

Λt
Fðεn1;tþ1ÞPtþ1þ½1�Fðεn1;tþ1Þ�θRtþ1mθ�1

jþ1;tþ1

h i
ðB:15Þ

θRtmθ�1
jt þst ¼ βEt

Λtþ1

Λt
Fðεnjþ1;tþ1ÞPtþ1þ½1�Fðεnjþ1;tþ1Þ�θRtþ1mθ�1

jþ1;tþ1

h i
: ðB:16Þ

These two equations, together with Eq. (B.5), correspond to the Jþ1 equations in Eq. (36) in Proposition 2.
The remaining Jþ2 equations are related to Vt

a
and the cutoff εnj;t for j¼ 1;2;…Jþ1, which are determined by Eq. (B.4). We

can use Eq. (B.4) to substitute out Vn
t ðsj;tÞ in Eq. (B.7) to obtain

V tðsj;tÞ ¼
Z
εr εnjt

½Va
t ðsjtÞ�Wtε� dFðεÞþ

Z
ε4 εnjt

½Va
t ðsjtÞ�Wtε

n

jt � dFðεÞ

¼ Va
t ðsjtÞ�Wt

Z
minfε; εnjtg dFðεÞ

¼ Va
t þPtsjt�Wt

Z
minfε; εnjtg dFðεÞ; ðB:17Þ

where the third line comes from Eq. (B.3). Substituting the above equation for V tðsj;tÞ into Eq. (B.2) under the optimal choices
gives Eq. (33) in Proposition 2. Using the relation (B.4) and the function V tðsjþ1;tþ1Þ defined in Eq. (B.17) to substitute out Vn

j;t
and V ðsjþ1;tþ1Þ in Eq. (B.11) under the optimal choices gives Eqs. (34) and (35) in Proposition 2. These together give us Jþ2
additional equations. The total number of equations is thus 3ðJþ1Þþ1 in Proposition 2. □

Appendix C. Steps for solving steady state

Since our model contains a long-run trend, we need to detrend the model before solving the steady state. We denote the
detrended variables as ~xt . For those variables without trend, their notations remain the same.

We then solve the steady state of our inventory model in several steps: in steps 1 and 2, we list all the variables and the
corresponding equations needed to solve for the variables; in steps 3 and 4, we illustrate how to recursively solve the steady
state using the system of equations listed in steps 1 and 2.

Step 1: We first list the equations needed to solve for the steady-state distributions of final goods firms, taking as given
the aggregate variables, f ~P ; ~W ; ~Rg. Assume that the fixed order cost ε follows the power distribution, FðεÞ ¼ ðε=εÞκ with
support εA ½0; ε�. The uniform distribution is a special case when κ¼1. Given the power distribution, we have the
relationshipZ

minfε; εng dF εð Þ ¼ 1� 1
1þκ

εn

ε

� �κ� �
εn: ðC:1Þ

The distribution of firms can then be solved using the following system of 4ðJþ1Þ equations implied by those in
Proposition 2 and the following relationship:

~V
a
j;t ¼ ~V

a
t þ ~Pt ~sj;t ; j¼ 1;2;…; J: ðC:2Þ

First, using the steady-state relationship implied by Eq. (C.2), ~V
a
j ¼ ~V

aþ ~P ~sj, we have

~V
a
j ¼ ~V

a
1� ~P ð~s1� ~sjÞ; ðC:3Þ

where ~V
a
1 is determined by Eqs. (33) and (C.2) as

~V
a
1 ¼ ~R ~mθ

0� ~s ~s1� ~P ~m0þβ ~V
a
1� ~W

Z
minfε; εn1g dFðεÞ

� �
: ðC:4Þ

These Jþ1 equations can be used in determining ~V
a
j , j¼ 1;2;…; Jþ1.

Second, the following Jþ1 equations can be used in determining εnj , j¼ 1;2;…; Jþ1. Eqs. (34) and (35) imply

~V
a
j � ~W εnj ¼ ~R ~mθ

j � ~s ~sjþ1þβ ~V
a
jþ1� ~W

Z
minfε; εnjþ1g dFðεÞ

� �
; for j¼ 1;…; J ðC:5Þ

~V
a
Jþ1� ~W εnJþ1 ¼ β ~V

a
Jþ1� ~W

Z
minfε; εnJþ1g dFðεÞ

� �
: ðC:6Þ

Third, from the first-order conditions for inventories, we have additional Jþ1 equations that can be used in determining
~sj for j¼ 1;2;…; Jþ1. Specifically, Eqs. (36) and (37) imply

θ ~R ~mθ�1
j þ ~s ¼ β Fðεnjþ1Þ ~Pþ½1�Fðεnjþ1Þ�θ ~R ~mθ�1

jþ1

n o
; j¼ 0;2;…J�1 ðC:7Þ

~sJþ1 ¼ 0: ðC:8Þ
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Finally, from the policy functions of input materials, the following Jþ1 equations can be used in determining ~mj,
j¼ 0;1;2;…; J. Eqs. (38) and (39) imply

θ ~R ~mθ�1
0 ¼ ~P ; ðC:9Þ

~mj ¼ ~sj=g2� ~sjþ1; j¼ 1;2;…J; ðC:10Þ
where g2 ¼ g1=ð1�αθmÞ.

Step 2: Now, we solve for the aggregate variables f ~W ; ~Rg as a function of the relative price of intermediate goods, ~P .
By the first-order conditions of intermediate goods firms, Eqs. (13) and (16), the real wage ~W can be expressed as

~W ¼ 1�αð Þ ~P
~K
~L

,
g1

 !α

; ðC:11Þ

where g1 ¼ gαθm=ð1�αθmÞ, ~K
~L
¼ ½ð1β�1þδÞgα1=ðα ~P Þ�1=ðα�1Þ. Given ~W , the steady-state ~R can be solved using Eq. (45).

Step 3: We now show how to recursively solve ff~sjgJþ1
j ¼ 1; f ~mjgJj ¼ 0; fεnj g

Jþ1
j ¼ 1

; f ~V a
j gJþ1

j ¼ 1g as functions of ~P from the system of
equations listed above. Eq. (C.9) implies

~m0 ¼
~P

θ ~R

 !1=ðθ�1Þ

: ðC:12Þ

So given ~P and f~s1; εn1g for vintage 1 firms, we can compute f ~mjgJj ¼ 1; f~sjg
Jþ1
j ¼ 2; fεnj g

Jþ1
j ¼ 2

, and f ~V a
j gJþ1

j ¼ 1 recursively below. Then we
will use two additional constraints to obtain ð~s1; εn1Þ at the end.

Eq. (C.4) implies that ~V
a
1 is a function of ð~s1; εn1Þ and ~P:

~V
a
1 ¼

~R ~m
θ

0� ~s ~s1� ~P ~m0�β ~W
R
minfε; εn1g dFðεÞ

1�β
: ðC:13Þ

From the recursive equation (C.7), we can compute ~m1 in terms of ~mθ
0 and εn1:

~m1 ¼
θ ~R ~m

θ

0þ ~s�βFðεn1Þ ~P
β½1�Fðεn1Þ�θ ~R

( )1=ðθ�1Þ

: ðC:14Þ

From Eqs. (C.10) and (C.3), ~s2 and ~V
a
2 can be updated to

~s2 ¼ ~s1=g2� ~m1 ðC:15Þ

~V
a
2 ¼ ~V

a
1� ~P ~m1: ðC:16Þ

Finally, from Eq. (C.5), we can solve for the cutoff εn2 according to the following equation:

1� 1
1þκ

εn2
ε

� �κ� �
εn2�

~V
a
1� ~W εn1� ~R ~m

θ

1þ ~s ~s2�β ~V
a

2

β ~W
¼ 0: ðC:17Þ

Repeating the above steps will give us f~sj; εnj ; ~mj�1; ~V
a
j g for j¼ 2;…; Jþ1. That is, by Eq. (C.7), we can update ~mj. By

Eq. (C.10), we can compute ~sjþ1. Then we can use Eq. (C.3) to compute ~V
a
Jþ1. Finally, using Eq. (C.5), we can obtain εnjþ1.

Once we have finished the above recursive procedure, we still need two more equations to pin down ~s1 and εn1.
Remember that we still have two additional equations that have not been used yet: Eqs. (C.6) and (C.8). By Eq. (C.10) at j¼ J
and Eq. (C.8), we have

~sJð ~P ; εn1; ~s1Þ ¼ ~mJð ~P ; εn1; ~s1Þ; ðC:18Þ
which yields one additional equation. For the other equation, notice that from previous recursive calculations, we have
obtained ~V

a
Jþ1ð ~P ; εn1; ~s1Þ and εnJþ1ð ~P ; εn1; ~s1Þ. Plugging them into Eq. (C.6) gives

~V
a
Jþ1� ~W εnJþ1 ¼ β ~V

a
Jþ1� ~W

Z
minfε; εnJþ1g dFðεÞ

� �
; ðC:19Þ

which gives the other equation needed for solving fεn1; s1g. Therefore given ~P , Eqs. (C.18) and (C.19) constitute two nonlinear
equations that can be used to jointly solve for εn1 and ~s1.

Once we know the cutoffs, εn1; ε
n

2;…εnJþ1, the distribution fωjg can then be solved by evaluating Eqs. (30)–(32) at
steady state.

Step 4: Now we specify the final step to solve for ~P . According to Eqs. (42) and (43), the total production of intermediate
goods, given ~P , is

~X ¼ ~Sð1�1=g2Þþ ~M ¼ ~Sð1�1=g2Þþ ∑
J�1

j ¼ 0
~mjωjþ1þ ~mJ ½1�FðεnJ Þ�ωJ : ðC:20Þ
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Since the Euler equation for capital stock, (13), implies

α ~P
~X
~K
¼ 1

β
� 1�δð Þ=g1; ðC:21Þ

we can solve for ~K as function of ~P . Since investment equals δ ~K , we can obtain ~I ¼ ½1�ð1�δÞ=g1� ~K . Also, from the household
optimal condition of consumption (4), we can solve for aggregate consumption using

1
~C
~W ¼ τ: ðC:22Þ

According to Eq. (44), the aggregate production for final goods can be determined by

~Y ¼ ∑
J�1

j ¼ 0
~yjωjþ1þ ~yJ ½1�FðεnJ Þ�ωJ ; ðC:23Þ

where ~yj ¼ ~R ~mθ
j =ð1�θnÞ� ~s ~sjþ1, for j¼ 0;…; J. Therefore, the final goods market clearing condition implies

~Y ð ~P Þ ¼ ~C ð ~PÞþ ~Ið ~PÞ; ðC:24Þ
which can be used to solve for ~P . □

Appendix D. Accuracy of our solution method

To compare the accuracy of our solution method with that used by KT, we illustrate it from two aspects below.
(1) Unlike the Krusell–Smith algorithm used in Khan and Thomas (2007a), we approximate the distribution of firms by

finite (Jþ1) vintages as in Dotsey et al. (1999), as shown above in Appendix C. We choose a large enough value of J such that
Table A1
The steady state of aggregate variables.

Number of J P C I Y S X M W

J¼4 0.4218 0.2953 0.0307 0.3260 0.5489 0.3684 0.3670 0.6539
J¼5 0.4214 0.2949 0.0307 0.3255 0.5594 0.3678 0.3663 0.6530
J¼6 0.4214 0.2948 0.0307 0.3255 0.5595 0.3678 0.3663 0.6530
J¼8 0.4214 0.2948 0.0307 0.3255 0.5595 0.3678 0.3663 0.6530

Note: P: price of materials, C: consumption, I: investment, Y: output, S: inventory stock, X: total ordering of materials, M: materials used in production, and
W: is real wage.

Table A2
The steady-state distribution of inventory firms.

Vintage (j) Active firms 1 2 3 4 5 6

Distribution ωðsjÞ 0.259 0.251 0.220 0.160 0.082 0.028
Inventories sj 1.652 1.129 0.693 0.346 0.105 0.006 0.000

Note: As our model contains a long-run trend which is absent in KT's model, the numbers in the table are slightly different from KT's (2007a) results
because of the different calibrations.

Table A3
Steady-state distribution of final-goods firms.

Vintage (j) Active firms 1 2 3 4 5 6

Distribution ωðsjÞ 0.266 0.257 0.224 0.160 0.076 0.017
Our method 0.268 0.258 0.224 0.159 0.074 0.017
KT

Inventory stocks sj 1.702 1.163 0.712 0.349 0.098 0.002 0.000
Our method 1.694 1.155 0.705 0.343 0.094 0.003 0.000
KT

Fraction adjusting Fðεnj Þ 0.034 0.129 0.287 0.526 0.807 0.835

Our method 0.036 0.132 0.292 0.534 0.806 0.838
KT

Note: Numbers in bold font are obtained by applying our solution method to KT's benchmark model. The numbers corresponding to KT are directly taken
from Table 2 in Khan and Thomas (2007a).



Table A4
Business cycle moments.

FS C I H X M

A. Volatility relative to GDP
Our method 0.846 0.364 6.101 0.695 1.688 1.374
KT 0.839 0.345 6.318 0.722 1.677 1.347

B. Correlation with GDP
Our method 0.995 0.888 0.988 0.973 0.999 0.987
KT 0.994 0.864 0.982 0.973 0.999 0.985

Note: FS: final sale; C: consumption; I: investment; H: hours worked; X: order of intermediate goods; M: intermediate goods input. All reported moments
are simulated moments under the HP filter. KT's results are directly taken from Table 5 in Khan and Thomas (2007a).

P. Wang et al. / Journal of Economic Dynamics & Control 44 (2014) 196–217216
the steady state of all aggregate variables under considerations converge. Table A1 below reports the steady-state values of
aggregate variables for different values of J. As can be seen, when JZ5, the steady-state values converge. We thus set J to be
5 in our paper. That is, we categorize the inventory firms into 6 vintage groups, which turns out identical to that assumed in
Khan and Thomas (2007a).

Table A2 reports the steady-state distribution of inventory firms. In particular, the firms in the fifth vintage group that adjusted
their ordering of materials five periods before hold positive inventory stocks, but the level is 0.006. This means the non-negative
constraints sjZ0 of these firms are not binding. Since the inventory stock sj is decreasing in j, we categorize all the firms with
inactive time longer than 5 periods into the last group (group 6). These firms are treated as one with zero inventories (or with a
binding constraint s¼0). However, the last group actually consists of two type of firms: those with the constraint sjZ0 frequently
binding and those with exact zero inventory stocks. So an approximation error is involved here. However, we believe that our
approximation does not lose accuracy because: (i) even though some firms in the last groupmay hold positive inventory stocks, the
level is negligible (less than 0.006), so classifying them as zero-inventory firms is not unacceptable; (ii) themeasure of these firms is
very small—accounts less than 2.8% of total firms. In principle, we can increase the size of J to shrink this approximation error
further down to zero. These two points imply that the general equilibrium effects of the last vintage group's behaviors on the
aggregate dynamics of our model are very limited.

(2) To see that our method performs at least as well as that of Khan and Thomas (2007a), we first apply our method to replicate
their results. Table A3 reports the steady-state distribution of inventory firms in the original KT model. As the table shows, the
distribution implied by our solution method (numbers in bold) is very close to those reported by Khan and Thomas (2007a), the
difference lies only in the third dismal digit. This comparison indicates that our solution method performs at least equally well
compared with KT's numerical method, in the sense of characterizing the steady-state inventory distributions.

Now we compare the business cycle moments obtained by log-linearization (our method) with those in KT's paper. Table A4
shows that the moments based on the two methods are very close to each other—differ only by the third dismal digit. This means
that the log-linearization does not cause loss in accuracy regarding the model's dynamics. In fact, we are free to use higher order
approximations to further improve the solution accuracy if desired. In addition, the relative ratio of GDP volatility between
inventory model and control model is 1.0158 in our method, that value in Khan and Thomas (2007a) is 1.0151. This means that our
method yields identical predictions to KT's method regarding the amplification effect of inventory investments on the
business cycle.

Based on the above comparisons, we are confident that our tractable approach with log-linearization approximation
performs as well as KT's numerical approach for characterizing both the steady state and the business cycle dynamics, but
our method is much faster and can thus be easily applied to model estimations.
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